Applied Microbiology and Biotechnology

, Volume 102, Issue 8, pp 3779–3791 | Cite as

New oenological practice to promote non-Saccharomyces species of interest: saturating grape juice with carbon dioxide

  • Laura Chasseriaud
  • Joana Coulon
  • Philippe Marullo
  • Warren Albertin
  • Marina Bely
Applied microbial and cell physiology


Non-Saccharomyces yeast species, naturally found in grape must, may impact wine quality positively or negatively. In this study, a mixture of five non-Saccharomyces species (Torulaspora delbrueckii, Metschnikowia spp., Starmerella bacillaris (formerly called Candida zemplinina), Hanseniaspora uvarum, Pichia kluyveri), mimicking the composition of the natural non-Saccharomyces community found in grape must, was used for alcoholic fermentation. The impact of CO2 saturation of the grape juice was studied first on this mixture alone, and then in the presence of Saccharomyces cerevisiae. Two isogenic strains of this species were used: the first with a short and the second a long fermentation lag phase. This study demonstrated that saturating grape juice with CO2 had interesting potential as an oenological technique, inhibiting undesirable species (S. bacillaris and H. uvarum) and stimulating non-Saccharomyces of interest (T. delbrueckii and P. kluyveri). This stimulating effect was particularly marked when CO2 saturation was associated with the presence of S. cerevisiae with long fermentation lag phase. The direct consequence of this association was an enhancement of 3-SH levels in the resulting wine.


CO2 Non-conventional yeast Lag phase Wine 



The authors thank, Cécile Thibon, Pascaline Redon, and the Sarco Company for their technical support, and Remy Ghidossi for his precious help.


This work was founded by Biolaffort company.

Compliance with ethical standards

This article does not contain any studies involving human participants or animals performed by any of the authors

Conflict of interest

Warren Albertin and Marina Bely declare that they have no conflict of interest.

Laura Chasseriaud, Joana Coulon, and Philippe Marullo are affiliated with the Biolaffort company.

Supplementary material

253_2018_8861_MOESM1_ESM.pdf (241 kb)
ESM 1 (PDF 240 kb)


  1. Albertin W, Miot-Sertier C, Bely M, Marullo P, Coulon J, Moine V, Colonna-Ceccaldi B, Masneuf-Pomarede I (2014) Oenological prefermentation practices strongly impact yeast population dynamics and alcoholic fermentation kinetics in chardonnay grape must. Int J Food Microbiol 178:87–97 CrossRefPubMedGoogle Scholar
  2. Albertin W, Zimmer A, Miot-Sertier C, Bernard M, Coulon J, Moine V, Colonna-Ceccaldi B, Bely M, Marullo P, Masneuf-Pomarede I (2017) Combined effect of the Saccharomyces cerevisiae lag phase and the non-Saccharomyces consortium to enhance wine fruitiness and complexity. Appl Microbiol Biotechnol 101:7603–7620. CrossRefPubMedGoogle Scholar
  3. Anfang N, Brajkovich M, Goddard MR (2009) Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc. Aust J Grape Wine Res 15:1–8. CrossRefGoogle Scholar
  4. Azzolini M, Fedrizzi B, Tosi E, Finato F, Vagnoli P, Scrinzi C, Zapparoli G (2012) Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae mixed cultures on fermentation and aroma of Amarone wine. Eur Food Res Technol 235:303–313. CrossRefGoogle Scholar
  5. Bely M, Renault PE (2013) Non-conventional yeasts and alcohol level reduction. Oenoviti international network, Bordeaux September 2013Google Scholar
  6. Blickstad E, Enfors S-O, Molin G (1981) Effect of hyperbaric carbon dioxide pressure on the microbial flora of pork stored at 4 or 14 °C. J Appl Bacteriol 50:493–504. CrossRefGoogle Scholar
  7. Boulton RB, Singleton VL, Bisson LF, Kunkee RE (1996) Principles and practices of winemaking. Springer, BostonCrossRefGoogle Scholar
  8. Cabrera MJ, Moreno J, Medina M (1988) Formation of ethanol, higher alcohols, esters, and terpenes by five yeast strains in musts from Pedro Ximenez grapes in various degrees of ripeness. Am J Enol Vitic 39:283–287Google Scholar
  9. Camarasa C, Sanchez I, Brial P, Bigey F, Dequin S, Harris S (2011) Phenotypic landscape of Saccharomyces cerevisiae during wine fermentation: evidence for origin-dependent metabolic traits. PLoS One 6(9):e25147 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Castelli A, Littarru GP, Barbaresi G (1969) Effect of pH and CO2 concentration changes on lipids and fatty acids of Saccharomyces cerevisiae. Arch Mikrobiol 66:34–39. CrossRefPubMedGoogle Scholar
  11. Charoenchai C, Fleet GH, Henschke PA, Todd BEN (1997) Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Aust J Grape Wine Res 3:2–8. CrossRefGoogle Scholar
  12. Chen SL, Gutmanis F (1976) Carbon dioxide inhibition of yeast growth in biomass production. Biotechnol Bioeng 18:1455–1462. CrossRefPubMedGoogle Scholar
  13. Ciani M, Maccarelli F (1997) Oenological properties of non-Saccharomyces yeasts associated with wine-making. World J Microbiol Biotechnol 14:199–203. CrossRefGoogle Scholar
  14. Ciani M, Picciotti G (1995) The growth kinetics and fermentation behaviour of some non-Saccharomyces yeasts associated with wine-making. Biotechnol Lett 17:1247–1250. CrossRefGoogle Scholar
  15. Ciani M, Beco L, Comitini F (2006) Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations. Int J Food Microbiol 108:239–245. CrossRefPubMedGoogle Scholar
  16. Ciani M, Comitini F, Mannazzu I, Domizio P (2010) Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res 10:123–133. CrossRefPubMedGoogle Scholar
  17. Coetzee C, du Toit WJ (2012) A comprehensive review on Sauvignon Blanc aroma with a focus on certain positive volatile thiols. Food Res Int 45:287–298. CrossRefGoogle Scholar
  18. Combina M, Mercado L, Borgo P, Elia A, Jofre V, Ganga A, Martinez C, Catania C (2005) Yeasts associated to Malbec grape berries from Mendoza, Argentina. J Appl Microbiol 98:1055–1061. CrossRefPubMedGoogle Scholar
  19. Comitini F, Gobbi M, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2011) Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol 28:873–882. CrossRefPubMedGoogle Scholar
  20. Contreras A, Curtin C, Varela C (2014) Yeast population dynamics reveal a potential “collaboration” between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation. Appl Microbiol Biotechnol 99:1885–1895. CrossRefPubMedGoogle Scholar
  21. Csoma H, Sipiczki M (2008) Taxonomic reclassification of Candida stellata strains reveals frequent occurrence of Candida zemplinina in wine fermentation. FEMS Yeast Res 8:328–336. CrossRefPubMedGoogle Scholar
  22. Darriet P, Tominaga T, Lavigne V, Boidron J-N, Dubourdieu D (1995) Identification of a powerful aromatic component of Vitis vinifera L. var. Sauvignon wines: 4-mercapto-4-methylpentan-2-one. Flavour Fragr J 10:385–392. CrossRefGoogle Scholar
  23. DeLuna A, Vetsigian K, Shoresh N, Hegreness M, Colón-González M, Chao S, Kishony R (2008) Exposing the fitness contribution of duplicated genes. Nat Genet 40:676–681. CrossRefPubMedGoogle Scholar
  24. Duarte FL, Pimentel NH, Teixeira A, Fonseca Á (2012) Saccharomyces bacillaris is not a synonym of Candida stellata: reinstatement as Starmerella bacillaris comb. nov. Antonie Leeuwenhoek 102:653–658. CrossRefPubMedGoogle Scholar
  25. Egli CM, Edinger WD, Mitrakul CM, Henick-Kling T (1998) Dynamics of indigenous and inoculated yeast populations and their effect on the sensory character of Riesling and chardonnay wines. J Appl Microbiol 85:779–789. CrossRefPubMedGoogle Scholar
  26. Englezos V, Rantsiou K, Torchio F, Rolle L, Gerbi V, Cocolin L (2015) Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: physiological and molecular characterizations. Int J Food Microbiol 199:33–40. CrossRefPubMedGoogle Scholar
  27. Englezos V, Giacosa S, Rantsiou K, Rolle L, Cocolin L (2017) Starmerella bacillaris in winemaking: opportunities and risks. Curr Opin Food Sci 17:30–35. CrossRefGoogle Scholar
  28. Fedrizzi B, Pardon KH, Sefton MA, Elsey GM, Jeffery DW (2009) First identification of 4-S-glutathionyl-4-methylpentan-2-one, a potential precursor of 4-mercapto-4-methylpentan-2-one, in Sauvignon Blanc juice. J Agric Food Chem 57:991–995. CrossRefPubMedGoogle Scholar
  29. Fernández M, Úbeda J, Briones A (2000) Typing of non-Saccharomyces yeasts with enzymatic activities of interest in wine-making. Int J Food Microbiol 59:29–36. CrossRefPubMedGoogle Scholar
  30. Fleet G (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86(1–2):11–22 CrossRefPubMedGoogle Scholar
  31. Fleet GH, Prakitchaiwattana C, Beh A, Heard G (2002) The yeast ecology of wine grapes. In: Ciano M (ed) Biodiversity and biotechnology of wine yeasts. Research Signpost, Kerala, pp 1–17Google Scholar
  32. Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, Elst K, Van Ginneken L, Debevere J, Van Impe JF, Devlieghere F (2007) High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. Int J Food Microbiol 117:1–28. CrossRefPubMedGoogle Scholar
  33. Gietz RD, Schiestl RH (1991) Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7:253–263. CrossRefPubMedGoogle Scholar
  34. Gil JV, Mateo JJ, JiméNez M, Pastor A, Huerta T (1996) Aroma compounds in wine as influenced by apiculate yeasts. J Food Sci 61:1247–1250. CrossRefGoogle Scholar
  35. Gill CO, Tan KH (1979) Effect of carbon dioxide on growth of Pseudomonas fluorescens. Appl Environ Microbiol 38:237–240PubMedPubMedCentralGoogle Scholar
  36. Goddard MR (2008) Quantifying the complexities of Saccharomyces cerevisiae’s ecosystem engineering via fermentation. Ecology 89:2077–2082. CrossRefPubMedGoogle Scholar
  37. Gunes G, Blum LK, Hotchkiss JH (2005) Inactivation of yeasts in grape juice using a continuous dense phase carbon dioxide processing system. J Sci Food Agric 85:2362–2368. CrossRefGoogle Scholar
  38. Haas GJ, Prescott HE, Dudley E, Dik R, Hintlian C, Keane L (1989) Inactivation of microorganisms by carbon dioxide under pressure. J Food Saf 9:253–265. CrossRefGoogle Scholar
  39. Hartman RE, Keen NT, Long M (1972) Carbon dioxide fixation by Verticillium albo-atrum. J Gen Microbiol 73:29–34. CrossRefGoogle Scholar
  40. Henschke PA, Jiranek V (1993) Yeasts: metabolism of nitrogen compounds. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Chur, pp 27–54Google Scholar
  41. Hernandez-Orte P, Cersosimo M, Loscos N, Cacho J, Garciamoruno E, Ferreira V (2008) The development of varietal aroma from non-floral grapes by yeasts of different genera. Food Chem 107:1064–1077. CrossRefGoogle Scholar
  42. Herraiz T, Reglero G, Herraiz M, Martin-Alvarez PJ, Cabezudo MD (1990) The influence of the yeast and type of culture on the volatile composition of wines fermented without sulfur dioxide. Am J Enol Vitic 41:313–318Google Scholar
  43. Holm Hansen E, Nissen P, Sommer P, Nielsen JC, Arneborg N (2001) The effect of oxygen on the survival of non-Saccharomyces yeasts during mixed culture fermentations of grape juice with Saccharomyces cerevisiae. J Appl Microbiol 91:541–547. CrossRefPubMedGoogle Scholar
  44. Howell KS, Swiegers JH, Elsey GM, Siebert TE, Bartowsky EJ, Fleet GH, Pretorius IS, de Barros Lopes MA (2004) Variation in 4-mercapto-4-methyl-pentan-2-one release by Saccharomyces cerevisiae commercial wine strains. FEMS Microbiol Lett 240:125–129. CrossRefPubMedGoogle Scholar
  45. Hutkins RW, Nannen NL (1993) pH homeostasis in lactic acid bacteria. J Dairy Sci 76:2354–2365. CrossRefGoogle Scholar
  46. Jolly NP, Augustyn OPH, Pretorius IS (2003) The occurrence of non-Saccharomyces yeast species over three vintages in four vineyards and grape musts from four production regions of the Western Cape, South Africa. South Afr J Enol Vitic 24:35–42. Google Scholar
  47. Jolly NP, Varela C, Pretorius IS (2014) Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res 14:215–237. CrossRefPubMedGoogle Scholar
  48. Jones RP, Greenfield PF (1982) Effect of carbon dioxide on yeast growth and fermentation. Enzym Microb Technol 4:210–223. CrossRefGoogle Scholar
  49. King AD, Nagel CW (1975) Influence of carbon dioxide upon the metabolism of Pseudomonas aeruginosa. J Food Sci 40:362–366. CrossRefGoogle Scholar
  50. Li S-S, Cheng C, Li Z, Chen J-Y, Yan B, Han B-Z, Reeves M (2010) Yeast species associated with wine grapes in China. Int J Food Microbiol 138:85–90. CrossRefPubMedGoogle Scholar
  51. Lin H-M, Cao N, Chen L-F (1994) Antimicrobial effect of pressurized carbon dioxide on Listeria monocytogenes. J Food Sci 59:657–659. CrossRefGoogle Scholar
  52. Magyar I, Tóth T (2011) Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiol 28:94–100. CrossRefPubMedGoogle Scholar
  53. Martinez J, Toledano F, Millan C, Ortega JM (1990) Development of alcoholic fermentation in non-sterile musts from “Pedro Ximenez” grapes inoculated with pure cultures of selected yeasts. Food Microbiol 7:217–225. CrossRefGoogle Scholar
  54. Martini A, Ciani M, Scorzetti G (1996) Direct enumeration and isolation of wine yeasts from grape surfaces. Am J Enol Vitic 47:435–440Google Scholar
  55. Marullo P, Bely M, Masneuf-Pomarede I, Pons M, Aigle M, Dubourdieu D (2006) Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model. FEMS Yeast Res 6:268–279 CrossRefPubMedGoogle Scholar
  56. Marullo P, Aigle M, Bely M, Masneuf-Pomarede I, Durrens P, Dubourdieu D, Yvert G (2007) Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains. FEMS Yeast Res 7:941–952. CrossRefPubMedGoogle Scholar
  57. Masneuf-Pomarède I, Mansour C, Murat M, Tominaga T, Dubourdieu D (2006) Influence of fermentation temperature on volatile thiols concentrations in Sauvignon Blanc wines. Int J Food Microbiol.
  58. Mestre MV, Maturano YP, Mercado L, Toro ME, Vazquez F, Combina M (2016) Evaluation of different co-inoculation time of non- Saccharomyces/Saccharomyces yeasts in order to obtain reduced ethanol wines. BIO Web Conf 7:02025. CrossRefGoogle Scholar
  59. Mills DA, Johannsen EA, Cocolin L (2002) Yeast diversity and persistence in Botrytis-affected wine fermentations. Appl Environ Microbiol 68:4884–4893. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Morales P, Rojas V, Quirós M, Gonzalez R (2015) The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Appl Microbiol Biotechnol 99:3993–4003. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Moreira N, Mendes F, Guedes de Pinho P, Hogg T, Vasconcelos I (2008) Heavy sulphur compounds, higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must. Int J Food Microbiol 124:231–238. CrossRefPubMedGoogle Scholar
  62. Moreno JJ, Millán C, Ortega JM, Medina M (1991) Analytical differentiation of wine fermentations using pure and mixed yeast cultures. J Ind Microbiol 7:181–189. CrossRefGoogle Scholar
  63. Murat ML, Masneuf I, Darriet P, Lavigne V, Tominaga T, Dubourdieu D (2001) Effect of Saccharomyces cerevisiae yeast strains on the liberation of volatile thiols in Sauvignon Blanc wine. Am J Enol Vitic 52:136–139Google Scholar
  64. Nguyen H-V, Panon G (1998) The yeast Metschnikowia pulcherrima has an inhibitory effect against various yeast species. Sci Aliments 18:515–526Google Scholar
  65. Okamoto H (1976) Effects of anoxia and high CO2 concentration on the electrogenic activity of leaf cell membrane in the dark. Plant Cell Physiol 17:1273–1280Google Scholar
  66. Oro L, Ciani M, Comitini F (2014) Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J Appl Microbiol 116:1209–1217. CrossRefPubMedGoogle Scholar
  67. Oura E, Haarasilta S, Londesborough J (1980) Carbon dioxide fixation by baker’s yeast in a variety of growth conditions. Microbiology 118:51–58. CrossRefGoogle Scholar
  68. Padilla B, Gil JV, Manzanares P (2016) Past and future of non-Saccharomyces yeasts: from spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front Microbiol 7:411 PubMedPubMedCentralGoogle Scholar
  69. Pate JB, Lodge JP, Wartburg AF (1962) Effect of pararosaniline in the trace determination of sulfur dioxide. Anal Chem 34:1660–1662. CrossRefGoogle Scholar
  70. Pérez G, Fariña L, Barquet M, Boido E, Gaggero C, Dellacassa E, Carrau F (2011) A quick screening method to identify β-glucosidase activity in native wine yeast strains: application of Esculin glycerol agar (EGA) medium. World J Microbiol Biotechnol 27:47–55. CrossRefGoogle Scholar
  71. Peynaud E (1956) Sur la formation d’acétate d’éthyle par les levures du vin. Ind Agric Aliment 73:253–257Google Scholar
  72. Peyrot des Gachons C, Tominaga T, Dubourdieu D (2002) Sulfur aroma precursor present in S-glutathione conjugate form: identification of S-3-(hexan-1-ol)-glutathione in must from Vitis vinifera L. cv. Sauvignon Blanc. J Agric Food Chem 50:4076–4079. CrossRefPubMedGoogle Scholar
  73. Plata C, Millán C, Mauricio JC, Ortega JM (2003) Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts. Food Microbiol 20:217–224. CrossRefGoogle Scholar
  74. Rapp A, Mandery H (1986) Wine aroma. Experientia 42:873–884. CrossRefGoogle Scholar
  75. Renault P, Coulon J, de Revel G, Barbe J-C, Bely M (2015) Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. Int J Food Microbiol 207:40–48 CrossRefPubMedGoogle Scholar
  76. Renault P, Miot-Sertier C, Marullo P, Hernández-Orte P, Lagarrigue L, Lonvaud-Funel A, Bely M (2009) Genetic characterization and phenotypic variability in Torulaspora delbrueckii species: potential applications in the wine industry. Int J Food Microbiol 134:201–210. CrossRefPubMedGoogle Scholar
  77. Renault PE, Coulon J, Moine V, Thibon C, Bely M (2016) Enhanced 3-sulfanyl-hexan-1-ol production in sequential mixed fermentation with Torulaspora delbrueckii/Saccharomyces cerevisiae reveals a situation of synergistic interaction between two industrial strains. Front Microbiol 7:293. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Rockwell GE, Highberger JH (1927) The necessity of carbon dioxide for the growth of bacteria, yeasts and molds. J Infect Dis 40:438–446CrossRefGoogle Scholar
  79. Roland A, Schneider R, Razungles A, Cavelier F (2011) Varietal thiols in wine: discovery, analysis and applications. Chem Rev 111:7355–7376. CrossRefPubMedGoogle Scholar
  80. Romano P (2003) Function of yeast species and strains in wine flavour. Int J Food Microbiol 86:169–180. CrossRefPubMedGoogle Scholar
  81. Rossouw D, Bauer FF (2016) Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity. Food Microbiol 55:32–46. CrossRefPubMedGoogle Scholar
  82. Sadoudi M, Tourdot-Maréchal R, Rousseaux S, Steyer D, Gallardo-Chacón J-J, Ballester J, Vichi S, Guérin-Schneider R, Caixach J, Alexandre H (2012) Yeast–yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol 32:243–253. CrossRefPubMedGoogle Scholar
  83. Salvadó Z, Arroyo-López FN, Barrio E, Querol A, Guillamón JM (2011) Quantifying the individual effects of ethanol and temperature on the fitness advantage of Saccharomyces cerevisiae. Food Microbiol 28:1155–1161. CrossRefPubMedGoogle Scholar
  84. Shinohara T, Kubodera S, Yanagida F (2000) Distribution of phenolic yeasts and production of phenolic off-flavors in wine fermentation. J Biosci Bioeng 90:90–97. CrossRefPubMedGoogle Scholar
  85. Soden A, Francis IL, Oakey H, Henschke PA (2000) Effects of co-fermentation with Candida stellata and Saccharomyces cerevisiae on the aroma and composition of Chardonnay wine. Aust J Grape Wine Res 6:21–30. CrossRefGoogle Scholar
  86. Spilimbergo S, Elvassore N, Bertucco A (2002) Microbial inactivation by high-pressure. J Supercrit Fluids 22:55–63. CrossRefGoogle Scholar
  87. Spilimbergo S, Bertucco A, Basso G, Bertoloni G (2005) Determination of extracellular and intracellular pH of Bacillus subtilis suspension under CO2 treatment. Biotechnol Bioeng 92:447–451. CrossRefPubMedGoogle Scholar
  88. Subileau M, Schneider R, Salmon J-M, Degryse E (2008) New insights on 3-mercaptohexanol (3MH) biogenesis in Sauvignon Blanc wines: cys-3MH and (E)-hexen-2-al are not the major precursors. J Agric Food Chem 56:9230–9235. CrossRefPubMedGoogle Scholar
  89. Swiegers JH, Pretorius IS (2005) Yeast Modulation of Wine Flavor. In: Advances in Applied Microbiology. Elsevier, pp 131–175.
  90. Teixeira de Mattos MJ, Plomp PJAM, Neijssel OM, Tempest DW (1984) Influence of metabolic end-products on the growth efficiency of Klebsiella aerogenes in anaerobic chemostat culture. Antonie Van Leeuwenhoek 50:461–472. CrossRefPubMedGoogle Scholar
  91. Tofalo R, Schirone M, Torriani S, Rantsiou K, Luca C, Perpetuini G, Suzzi G (2012) Diversity of Candida zemplinina strains from grapes and Italian wines. Food Microbiol 29:18–26CrossRefPubMedGoogle Scholar
  92. Tominaga T, Dubourdieu D (2006) A novel method for quantification of 2-methyl-3-furanthiol and 2-furanmethanethiol in wines made from Vitis vinifera grape varieties. J Agric Food Chem 54:29–33. CrossRefPubMedGoogle Scholar
  93. Tominaga T, Peyrot des Gachons C, Dubourdieu D (1998) A new type of flavor precursors in Vitis vinifera L. cv. Sauvignon Blanc: S-cysteine conjugates. J Agric Food Chem 46:5215–5219. CrossRefGoogle Scholar
  94. Zimmer A (2013) Etude du déterminisme génétique de la phase de latence chez Saccharomyces cerevisiae en conditions oenologiques. Impact des mécanismes de résistance au SO2. PhD Thesis, Université de Bordeaux 2, FranceGoogle Scholar
  95. Zimmer A, Durand C, Loira N, Durrens P, Sherman DJ, Marullo P (2014) QTL Dissection of lag phase in wine fermentation reveals a new translocation responsible for Saccharomyces cerevisiae adaptation to sulfite. PLoS ONE 9:e86298.
  96. Zott K, Miot-Sertier C, Claisse O, Lonvaud-Funel A, Masneuf-Pomarede I (2008) Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int J Food Microbiol 125:197–203. CrossRefPubMedGoogle Scholar
  97. Zott K, Thibon C, Bely M, Lonvaud-Funel A, Dubourdieu D, Masneuf-Pomarede I (2011) The grape must non-Saccharomyces microbial community: impact on volatile thiol release. Int J Food Microbiol 151:210–215. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.BioLaffortBordeauxFrance
  2. 2.EA 4577, Œnologie, Unité de Recherche ŒnologieUniversity de Bordeaux, ISVVVillenave d’Ornon, CedexFrance
  3. 3.ENSCBP - Bordeaux INPPessac CedexFrance

Personalised recommendations