Applied Microbiology and Biotechnology

, Volume 102, Issue 8, pp 3487–3495 | Cite as

The molecular basis for lipase stereoselectivity

  • Hui Chen
  • Xiao Meng
  • Xiaoqing Xu
  • Wenbo Liu
  • Shengying Li


Lipases are among the most applied biocatalysts in organic synthesis to catalyze the kinetic resolution of a wide range of racemic substrates to yield optically pure compounds. Due to the rapidly increased demands for optically pure compounds, deep understanding of the molecular basis for lipase stereoselectivity and how to obtain lipases with excellent asymmetric selectivity have become one of primary research goals in this field. This review is focused on the molecular factors that have impacts on the stereoselectivity of lipases including the steric complementarity between the lipase topological structure and its substrate, the regional structural flexibility, the hydrogen bonds between the residues around the catalytic site and the tetrahedral intermediates, and the electrostatic interactions between surface residues. Moreover, the synergistic effects of these structural factors on the catalytic properties including stereoselectivity, activity, and stability are also discussed.


Lipase Stereoselectivity Steric exclusion Structural flexibility Hydrogen bond Electrostatic interaction 


Funding information

This work was financially supported by funding from the National Natural Science Foundation of China under grant numbers NSFC 21406250 and the Applied Basic Research Programs of Science and Technology of Qingdao, 15-9-1-106-jch.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Ahmed SN, Kazlauskas RJ, Morinville AH, Grochulski P, Schrag JD, Cygler M (1994) Enantioselectivity of Candida rugosa lipase toward carboxylic acids: a predictive rule from substrate mapping and X-ray crystallography. Biocatalysis 9(1–4):209–225. CrossRefGoogle Scholar
  2. Barbosa O, Ruiz M, Ortiz C, Fernández M, Torres R, Fernandez-Lafuente R (2012) Modulation of the properties of immobilized CALB by chemical modification with 2, 3, 4-trinitrobenzenesulfonate or ethylenediamine. Advantages of using adsorbed lipases on hydrophobic supports. Process Biochem 47(5):867–876. CrossRefGoogle Scholar
  3. Berglund P (2001) Controlling lipase enantioselectivity for organic synthesis. Biomol Eng 18(1):13–22. CrossRefPubMedGoogle Scholar
  4. Bordes F, Cambon E, Dossat-Létisse V, Andre I, Croux C, Nicaud J, Marty A (2009) Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site. Chembiochem 10(10):1705–1713. CrossRefPubMedGoogle Scholar
  5. Broos J, Visser AJ, Engbersen JF, Verboom W, van Hoek A, Reinhoudt DN (1995) Flexibility of enzymes suspended in organic solvents probed by time-resolved fluorescence anisotropy. Evidence that enzyme activity and enantioselectivity are directly related to enzyme flexibility. J Am Chem Soc 117(51):12657–12663. CrossRefGoogle Scholar
  6. Bustos-Jaimes I, Mora-Lugo R, Calcagno ML, Farrés A (2010) Kinetic studies of Gly28: Ser mutant form of Bacillus pumilus lipase: changes in k cat and thermal dependence. Biochim Biophys Acta, Proteins Proteomics 1804(12):2222–2227. CrossRefGoogle Scholar
  7. Cambon E, Piamtongkam R, Bordes F, Duquesne S, André I, Marty A (2010) Rationally engineered double substituted variants of Yarrowia lipolytica lipase with enhanced activity coupled with highly inverted enantioselectivity towards 2-bromo phenyl acetic acid esters. Biotechnol Bioeng 106(6):852–859. CrossRefPubMedGoogle Scholar
  8. Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angew Chem Int Ed 39(13):2226–2254. CrossRefGoogle Scholar
  9. Castillo B, Delgado Y, Barletta G, Griebenow K (2010) Enantioselective transesterification catalysis by nanosized serine protease subtilisin Carlsberg particles in tetrahydrofuran. Tetrahedron 66(12):2175–2180. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Celej MS, Montich GG, Fidelio GD (2003) Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci 12(7):1496–1506. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen H, Wu J, Yang L, Xu G (2013) A combination of site-directed mutagenesis and chemical modification to improve diastereopreference of Pseudomonas alcaligenes lipase. Biochim Biophys Acta, Proteins Proteomics 1834(12):2494–2501. CrossRefGoogle Scholar
  12. Chen H, Wu J, Yang L, Xu G (2014a) Improving Pseudomonas alcaligenes lipase’s diastereopreference in hydrolysis of diastereomeric mixture of menthyl propionate by site-directed mutagenesis. Biotechnol Bioprocess Eng 19(4):592–604. CrossRefGoogle Scholar
  13. Chen H, Wu J, Yang L, Xu G (2014b) Characterization and structure basis of Pseudomonas alcaligenes lipase’s enantiopreference towards d, l-menthyl propionate. J Mol Catal B Enzym 102:81–87. CrossRefGoogle Scholar
  14. Colton IJ, Yin DT, Grochulski P, Kazlauskas RJ (2011) Molecular basis of chiral acid recognition by Candida rugosa lipase: X-ray structure of transition state analog and modeling of the hydrolysis of methyl 2-methoxy-2-phenylacetate. Adv Synth Catal 353(13):2529–2544. CrossRefGoogle Scholar
  15. Cortés J, Siméon T, Ruiz de Angulo V, Guieysse D, Remaud-Siméon M, Tran V (2005) A path planning approach for computing large-amplitude motions of flexible molecules. Bioinformatics 21(suppl_1):i116–i125. CrossRefPubMedGoogle Scholar
  16. Cygler M, Grochulski P, Kazlauskas RJ, Schrag JD, Bouthillier F, Rubin B, Serreqi AN, Gupta AK (1994) A structural basis for the chiral preferences of lipases. J Am Chem Soc 116(8):3180–3186. CrossRefGoogle Scholar
  17. Foresti ML, Galle M, Ferreira ML, Briand LE (2009) Enantioselective esterification of ibuprofen with ethanol as reactant and solvent catalyzed by immobilized lipase: experimental and molecular modeling aspects. J Chem Technol Biotechnol 84(10):1461–1473. CrossRefGoogle Scholar
  18. Guieysse D, Salagnad C, Monsan P, Remaud-Simeon M, Tran V (2003) Towards a novel explanation of Pseudomonas cepacia lipase enantioselectivity via molecular modelling of the enantiomer trajectory into the active site. Tetrahedron Asymmetry 14(13):1807–1817. CrossRefGoogle Scholar
  19. Guieysse D, Cortés J, Puech-Guenot S, Barbe S, Lafaquière V, Monsan P, Siméon T, André I, Remaud-Siméon M (2008) A structure-controlled investigation of lipase enantioselectivity by a path-planning approach. Chembiochem 9(8):1308–1317. CrossRefPubMedGoogle Scholar
  20. Höhne M, Bornscheuer UT (2009) Biocatalytic routes to optically active amines. ChemCatChem 1(1):42–51. CrossRefGoogle Scholar
  21. Ivancic M, Valinger G, Gruber K, Schwab H (2007) Inverting enantioselectivity of Burkholderia gladioli esterase EstB by directed and designed evolution. J Biotechnol 129(1):109–122. CrossRefPubMedGoogle Scholar
  22. Jaeger K, Dijkstra B, Reetz M (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53(1):315–351. CrossRefPubMedGoogle Scholar
  23. Kazlauskas RJ, Weissfloch AN, Rappaport AT, Cuccia LA (1991) A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J Org Chem 56(8):2656–2665. CrossRefGoogle Scholar
  24. Ke T, Klibanov AM (1999) Markedly enhancing enzymatic enantioselectivity in organic solvents by forming substrate salts. J Am Chem Soc 121(14):3334–3340. CrossRefGoogle Scholar
  25. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(6817):241–246. CrossRefPubMedGoogle Scholar
  26. Kobayashi R, Hirano N, Kanaya S, Saito I, Haruki M (2010) Enhancement of the enzymatic activity of Escherichia coli acetyl esterase by random mutagenesis. J Mol Catal B Enzym 67(1):155–161. CrossRefGoogle Scholar
  27. Lafaquière V, Barbe S, Puech-Guenot S, Guieysse D, Cortés J, Monsan P, Siméon T, André I, Remaud-Siméon M (2009) Control of lipase enantioselectivity by engineering the substrate binding site and access channel. Chembiochem 10(17):2760–2771. CrossRefPubMedGoogle Scholar
  28. Liebeton K, Zonta A, Schimossek K, Nardini M, Lang D, Dijkstra BW, Reetz MT, Jaeger K-E (2000) Directed evolution of an enantioselective lipase. Chem Biol 7(9):709–718. CrossRefPubMedGoogle Scholar
  29. Magnusson AO, Rotticci-Mulder JC, Santagostino A, Hult K (2005) Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B. Chembiochem 6(6):1051–1056. CrossRefPubMedGoogle Scholar
  30. Marton Z, Léonard-Nevers V, Syrén P-O, Bauer C, Lamare S, Hult K, Tranc V, Graber M (2010) Mutations in the stereospecificity pocket and at the entrance of the active site of Candida antarctica lipase B enhancing enzyme enantioselectivity. J Mol Catal B Enzym 65(1):11–17. CrossRefGoogle Scholar
  31. Meng X, Guo L, Xu G, Wu J-P, Yang L-R (2014) A new mechanism of enantioselectivity toward chiral primary alcohol by lipase from Pseudomonas cepacia. J Mol Catal B Enzym 109:109–115. CrossRefGoogle Scholar
  32. Meyer H-P, Eichhorn E, Hanlon S, Lütz S, Schürmann M, Wohlgemuth R, Coppolecchia R (2013) The use of enzymes in organic synthesis and the life sciences: perspectives from the Swiss Industrial Biocatalysis Consortium (SIBC). Catal Sci Technol 3(1):29–40. CrossRefGoogle Scholar
  33. Nishigaki T, Yasufuku Y, Murakami S, Ebara Y, Ueji S-i (2008) A great improvement of the enantioselectivity of lipase-catalyzed hydrolysis and esterification using co-solvents as an additive. Bull Chem Soc Jpn 81(5):617–622. CrossRefGoogle Scholar
  34. Park HJ, Joo JC, Park K, Yoo YJ (2012) Stabilization of Candida antarctica lipase B in hydrophilic organic solvent by rational design of hydrogen bond. Biotechnol Bioprocess Eng 17(4):722–728. CrossRefGoogle Scholar
  35. Park A, Kim S, Park J, Joe S, Min B, Oh J, Song J, Park S, Park S, Lee H (2016) Structural and experimental evidence for the enantiomeric recognition toward a bulky sec-alcohol by Candida antarctica lipase B. ACS Catal 6(11):7458–7465. CrossRefGoogle Scholar
  36. Peters G, Bywater R (1999) Computational analysis of chain flexibility and fluctuations in Rhizomucor miehei lipase. Protein Eng 12(9):747–754. CrossRefPubMedGoogle Scholar
  37. Piamtongkam R, Duquesne S, Bordes F, Barbe S, André I, Marty A, Chulalaksananukul W (2011) Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Biotechnol Bioeng 108(8):1749–1756. CrossRefPubMedGoogle Scholar
  38. Rariy RV, Klibanov AM (2000) On the relationship between enzymatic enantioselectivity in organic solvents and enzyme flexibility. Biocatal Biotransformation 18(5):401–407. CrossRefGoogle Scholar
  39. Reetz MT (2012) Laboratory evolution of stereoselective enzymes as a means to expand the toolbox of organic chemists. Tetrahedron 68(37):7530–7548. CrossRefGoogle Scholar
  40. Rotticci D, Hæffner F, Orrenius C, Norin T, Hult K (1998) Molecular recognition of sec-alcohol enantiomers by Candida antarctica lipase B. J Mol Catal B Enzym 5(1):267–272. CrossRefGoogle Scholar
  41. Santos AM, Vidal M, Pacheco Y, Frontera J, Báez C, Ornellas O, Barletta G, Griebenow K (2001) Effect of crown ethers on structure, stability, activity, and enantioselectivity of subtilisin Carlsberg in organic solvents. Biotechnol Bioeng 74(4):295–308. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schulz T, Pleiss J, Schmid RD (2000) Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model. Protein Sci 9(6):1053–1062. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Schulz T, Schmid RD, Pleiss J (2001) Structural basis of stereoselectivity in Candida rugosa lipase-catalyzed hydrolysis of secondary alcohols. J Mol Model 7(7):265–270. CrossRefGoogle Scholar
  44. Sharma S, Kanwar SS (2014) Organic solvent tolerant lipases and applications. Sci World J 2014:1–15. Google Scholar
  45. Shih T, Pan T (2011) Substitution of Asp189 residue alters the activity and thermostability of Geobacillus sp. NTU 03 lipase. Biotechnol Lett 33(9):1841–1846. CrossRefPubMedGoogle Scholar
  46. Tomić S, Bertoša B, Kojić-Prodić B, Kolosvary I (2004) Stereoselectivity of Burkholderia cepacia lipase towards secondary alcohols: molecular modelling and 3D QSAR approach. Tetrahedron Asymmetry 15(7):1163–1172. CrossRefGoogle Scholar
  47. Tuomi WV, Kazlauskas RJ (1999) Molecular basis for enantioselectivity of lipase from Pseudomonas cepacia toward primary alcohols. Modeling, kinetics, and chemical modification of Tyr29 to increase or decrease enantioselectivity. J Org Chem 64(8):2638–2647. CrossRefPubMedGoogle Scholar
  48. Ueji S-i, Taniguchi T, Okamoto T, Watanabe K, Ebara Y, Ohta H (2003a) Flexibility of lipase brought about by solvent effects controls its enantioselectivity in organic media. Bull Chem Soc Jpn 76(2):399–403. CrossRefGoogle Scholar
  49. Ueji S-i, Ueda A, Tanaka H, Watanabe K, Okamoto T, Ebara Y (2003b) Chemical modification of lipases with various hydrophobic groups improves their enantioselectivity in hydrolytic reactions. Biotechnol Lett 25(1):83–87. CrossRefPubMedGoogle Scholar
  50. Wang PY, Wu CH, Ciou JF, Wu AC, Tsai SW (2010) Kinetic resolution of (R, S)-pyrazolides containing substituents in the leaving pyrazole for increased lipase enantioselectivity. J Mol Catal B-Enzym 66(1):113–119. CrossRefGoogle Scholar
  51. Watanabe K, Uno T, Koshiba T, Okamoto T, Ebara Y, Ueji S-i (2004) How does lipase flexibility affect its enantioselectivity in organic solvents? A possible role of CH··· π association in stabilization of enzyme–substrate complex. Bull Chem Soc Jpn 77(3):543–548. CrossRefGoogle Scholar
  52. Wu Q, Soni P, Reetz MT (2013) Laboratory evolution of enantiocomplementary Candida antarctica lipase B mutants with broad substrate scope. J Am Chem Soc 135(5):1872–1881. CrossRefPubMedGoogle Scholar
  53. Wu JP, Li M, Zhou Y, Yang LR, Xu G (2015) Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability. Biotechnol Lett 37(2):403–407. CrossRefPubMedGoogle Scholar
  54. Xu G, Meng X, Xu L-J, Guo L, Wu J-P, Yang L-R (2015) Modification and simulation of Rhizomucor miehei lipase: the influence of surficial electrostatic interaction on enantioselectivity. Biotechnol Lett 37(4):871–880. CrossRefPubMedGoogle Scholar
  55. Yang B, Wang H, Song W, Chen X, Liu J, Luo Q, Liu L (2017) Engineering of the conformational dynamics of lipase to increase enantioselectivity. ACS Catal 7(11):7593–7599. CrossRefGoogle Scholar
  56. Yao C, Cao Y, Wu S, Li S, He B (2013) An organic solvent and thermally stable lipase from Burkholderia ambifaria YCJ01: purification, characteristics and application for chiral resolution of mandelic acid. J Mol Catal B-Enzym 85:105–110. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  2. 2.Shanghai SynTheAll Pharmaceutical Co., Ltd.ShanghaiChina
  3. 3.Rushan Hanwei Biological Science and Technology Co., Ltd.RushanChina

Personalised recommendations