Applied Microbiology and Biotechnology

, Volume 102, Issue 8, pp 3475–3485 | Cite as

Genomic and phenotypic diversity of Listeria monocytogenes clonal complexes associated with human listeriosis

  • Teresa M. Bergholz
  • Manoj K. Shah
  • Laurel S. Burall
  • Mira Rakic-Martinez
  • Atin R. Datta


Listeria monocytogenes is a pathogen of significant concern in many ready to eat foods due to its ability to survive and multiply even under significant environmental stresses. Listeriosis in humans is a concern, especially to high-risk populations such as those who are immunocompromised or pregnant, due to the high rates of morbidity and mortality. Whole genome sequencing has become a routine part of assessing L. monocytogenes isolated from patients, and the frequency of different genetic subtypes associated with listeriosis is now being reported. The recent abundance of genome sequences for L. monocytogenes has provided a wealth of information regarding the variation in core and accessory genomic elements. Newly described accessory genomic regions have been linked to greater virulence capabilities as well as greater resistance to environmental stressors such as sanitizers commonly used in food processing facilities. This review will provide a summary of our current understanding of stress response and virulence phenotypes of L. monocytogenes, within the context of the genetic diversity of the pathogen.


Listeria monocytogenes Listeriosis Stress response Genetic variation Adaptation 



Teresa M. Bergholz and the work in the Bergholz lab is partially supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under project no. ND02426. Mira Rakic-Martinez was supported by the Oak Ridge Institute for Science and Education Research Participation Program to the FDA.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any experiments with human participants or animals performed by the authors.


  1. Aase B, Sundheim G, Langsrud S, Rorvik LM (2000) Occurrence of and a possible mechanism for resistance to a quaternary ammonium compound in Listeria monocytogenes. Int J Food Microbiol 62(1–2):57–63CrossRefPubMedGoogle Scholar
  2. Adriao A, Vieira M, Fernandes I, Barbosa M, Sol M, Tenreiro RP, Chambel L, Barata B, Zilhao I, Shama G, Perni S, Jordan SJ, Andrew PW, Faleiro ML (2008) Marked intra-strain variation in response of Listeria monocytogenes dairy isolates to acid or salt stress and the effect of acid or salt adaptation on adherence to abiotic surfaces. Int J Food Microbiol 123(1–2):142–150CrossRefPubMedGoogle Scholar
  3. Angelo KM, Conrad AR, Saupe A, Dragoo H, West N, Sorenson A, Barnes A, Doyle M, Beal J, Jackson KA, Stroika S, Tarr C, Kucerova Z, Lance S, Gould LH, Wise M, Jackson BR (2017) Multistate outbreak of Listeria monocytogenes infections linked to whole apples used in commercially produced, prepackaged caramel apples: United States, 2014-2015. Epidemiol Infect 145(5):848–856. CrossRefPubMedGoogle Scholar
  4. Arguedas-Villa C, Stephan R, Tasara T (2010) Evaluation of cold growth and related gene transcription responses associated with Listeria monocytogenes strains of different origins. Food Microbiol 27(5):653–660. CrossRefPubMedGoogle Scholar
  5. Begley M, Cotter PD, Hill C, Ross RP (2010) Glutamate decarboxylase-mediated nisin resistance in Listeria monocytogenes. Appl Environ Microbiol 76(19):6541–6546CrossRefPubMedPubMedCentralGoogle Scholar
  6. Begley M, Gahan CG, Hill C (2002) Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 68(12):6005–12Google Scholar
  7. Bergholz TM, den Bakker HC, Fortes ED, Boor KJ, Wiedmann M (2010) Salt stress phenotypes in Listeria monocytogenes vary by genetic lineage and temperature. Foodborne Pathog Dis 7(12):1537–1549CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bergholz TM, Bowen B, Wiedmann M, Boor KJ (2012) Listeria monocytogenes shows temperature-dependent and -independent responses to salt stress, including responses that induce cross-protection against other stresses. Appl Environ Microbiol 78(8):2602–2612. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bergholz TM, Tang S, Wiedmann M, Boor KJ (2013) Nisin resistance of Listeria monocytogenes is increased by exposure to salt stress and is mediated via LiaR. Appl Environ Microbiol 79(18):5682–5688. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bertrand S, Ceyssens PJ, Yde M, Dierick K, Boyen F, Vanderpas J, Vanhoof R, Mattheus W (2016) Diversity of Listeria monocytogenes strains of clinical and food chain origins in Belgium between 1985 and 2014. PLoS One 11(10):e0164283. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bonnet M, Montville TJ (2005) Acid-tolerant Listeria monocytogenes persist in a model food system fermented with nisin-producing bacteria. Lett Appl Microbiol 40(4):237–242. CrossRefPubMedGoogle Scholar
  12. Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F (2011) Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27(9):1017–1032. CrossRefPubMedGoogle Scholar
  13. Burall LS, Laksanalamai P, Datta AR (2012) Listeria monocytogenes mutants with altered growth phenotypes at refrigeration temperature and high salt concentrations. Appl Environ Microbiol 78(4):1265–1272. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Burall LS, Simpson AC, Chou L, Laksanalamai P, Datta AR (2015) A novel gene, lstC, of Listeria monocytogenes is implicated in high salt tolerance. Food Microbiol 48:72–82. CrossRefPubMedGoogle Scholar
  15. Burall LS, Grim CJ, Datta AR (2017a) A clade of Listeria monocytogenes serotype 4b variant strains linked to recent listeriosis outbreaks associated with produce from a defined geographic region in the US. PLoS One 12(5):e0176912. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Burall LS, Grim CJ, Mammel MK, Datta AR (2017b) A comprehensive evaluation of the genetic relatedness of Listeria monocytogenes serotype 4b variant strains. Front Public Health 5:241. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Burgess CM, Gianotti A, Gruzdev N, Holah J, Knochel S, Lehner A, Margas E, Esser SS, Sela Saldinger S, Tresse O (2016) The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol 221:37–53. CrossRefPubMedGoogle Scholar
  18. Cantinelli T, Chenal-Francisque V, Diancourt L, Frezal L, Leclercq A, Wirth T, Lecuit M, Brisse S (2013) Epidemic clones of Listeria monocytogenes are widespread and ancient clonal groups. J Clin Microbiol 51:3770–3779. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cartwright EJ, Jackson KA, Johnson SD, Graves LM, Silk BJ, Mahon BE (2013) Listeriosis outbreaks and associated food vehicles, United States, 1998-2008. Emerg Infect Dis 19(1):1–9; quiz 184. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Centers for Disease Control (2015) Multistate outbreak of Listeriosis linked to commercially produced, prepackaged caramel apples made from Bidart bros. Apples (Final Update). PUblisher.
  21. Chenal-Francisque V, Lopez J, Cantinelli T, Caro V, Tran C, Leclercq A, Lecuit M, Brisse S (2011) Worldwide distribution of major clones of Listeria monocytogenes. Emerg Infect Dis 17(6):1110–1112. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Datta AR, Benjamin MM (1997) Factors controlling acid tolerance of Listeria monocytogenes: effects of nisin and other ionophores. Appl Environ Microbiol 63(10):4123–4126PubMedPubMedCentralGoogle Scholar
  23. Davis MJ, Coote PJ, O’Byrne CP (1996) Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance. Microbiology 142(Pt 10):2975–2982CrossRefPubMedGoogle Scholar
  24. de Zwart FJ, Slow S, Payne RJ, Lever M, George PM, Gerrard JA, Chambers ST (2003) Glycine betaine and glycine betaine analogues in common foods. Food Chem 83(2):197–204. CrossRefGoogle Scholar
  25. den Bakker HC, Didelot X, Fortes ED, Nightingale KK, Wiedmann M (2008) Lineage specific recombination rates and microevolution in Listeria monocytogenes. BMC Evol Biol 8:277CrossRefGoogle Scholar
  26. den Bakker HC, Desjardins CA, Griggs AD, Peters JE, Zeng Q, Young SK, Kodira CD, Yandava C, Hepburn TA, Haas BJ, Birren BW, Wiedmann M (2013) Evolutionary dynamics of the accessory genome of Listeria monocytogenes. PLoS One 8(6):e67511. CrossRefGoogle Scholar
  27. Elhanafi D, Dutta V, Kathariou S (2010) Genetic characterization of plasmid-associated benzalkonium chloride resistance determinants in a Listeria monocytogenes strain from the 1998-1999 outbreak. Appl Environ Microbiol 76(24):8231–8238. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Feehily C, Finnerty A, Casey PG, Hill C, Gahan CG, O’Byrne CP, Karatzas KA (2014) Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in Listeria monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance. PLoS One 9(11):e112649. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Freitag NE, Port GC, Miner MD (2009) Listeria monocytogenes—from saprophyte to intracellular pathogen. Nat Rev Microbiol 7(9):623–628CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gilmour MW, Graham M, Van Domselaar G, Tyler S, Kent H, Trout-Yakel KM, Larios O, Allen V, Lee B, Nadon C (2010) High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics 11:120. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Glass KA, Golden MC, Wanless BJ, Bedale W, Czuprynski C (2015) Growth of Listeria monocytogenes within a caramel-coated apple microenvironment. mBio 6(5):e01232-15. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Goulet V, Hedberg C, Le Monnier A, de Valk H (2008) Increasing incidence of listeriosis in France and other European countries. Emerg Infect Dis 14(5):734–740. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gray MJ, Zadoks RN, Fortes ED, Dogan B, Cai S, Chen Y, Scott VN, Gombas DE, Boor KJ, Wiedmann M (2004) Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl Environ Microbiol 70(10):5833–5841CrossRefPubMedPubMedCentralGoogle Scholar
  34. Haase JK, Didelot X, Lecuit M, Korkeala H, The Listeria monocytogenes MLST Study Group, Achtman M (2014) The ubiquitous nature of Listeria monocytogenes clones: a large-scale multilocus sequence typing study. Environ Microbiol 16(2):405–416.
  35. Hain T, Chatterjee SS, Ghai R, Kuenne CT, Billion A, Steinweg C, Domann E, Karst U, Jansch L, Wehland J, Eisenreich W, Bacher A, Joseph B, Schar J, Kreft J, Klumpp J, Loessner MJ, Dorscht J, Neuhaus K, Fuchs TM, Scherer S, Doumith M, Jacquet C, Martin P, Cossart P, Rusniock C, Glaser P, Buchrieser C, Goebel W, Chakraborty T (2007) Pathogenomics of Listeria spp. Int J Med Microbiol 297(7–8):541–557. CrossRefPubMedGoogle Scholar
  36. Harter E, Wagner EM, Zaiser A, Halecker S, Wagner M, Rychli K (2017) Stress survival islet 2, predominantly present in Listeria monocytogenes strains of sequence type 121, is involved in the alkaline and oxidative stress responses. Appl Environ Microbiol 83(16):e00827–e00817. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hingston P, Chen J, Allen K, Truelstrup Hansen L, Wang S (2017a) Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes. PLoS One 12(6):e0180123. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hingston P, Chen J, Dhillon BK, Laing C, Bertelli C, Gannon V, Tasara T, Allen K, Brinkman FS, Truelstrup Hansen L, Wang S (2017b) Genotypes associated with Listeria monocytogenes isolates displaying impaired or enhanced tolerances to cold, salt, acid, or desiccation stress. Front Microbiol 8:369. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hingston PA, Piercey MJ, Truelstrup Hansen L (2015) Genes associated with desiccation and osmotic stress in Listeria monocytogenes as revealed by insertional mutagenesis. Appl Environ Microbiol 81(16):5350–5362. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Huang YT, Ko WC, Chan YJ, Lu JJ, Tsai HY, Liao CH, Sheng WH, Teng LJ, Hsueh PR (2015) Disease burden of invasive listeriosis and molecular characterization of clinical isolates in Taiwan, 2000-2013. PLoS One 10(11):e0141241. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jennison AV, Masson JJ, Fang NX, Graham RM, Bradbury MI, Fegan N, Gobius KS, Graham TM, Guglielmino CJ, Brown JL, Fox EM (2017) Analysis of the Listeria monocytogenes population structure among isolates from 1931 to 2015 in Australia. Front Microbiol 8:603. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jensen AK, Bjorkman JT, Ethelberg S, Kiil K, Kemp M, Nielsen EM (2016) Molecular typing and epidemiology of human listeriosis cases, Denmark, 2002–2012. Emerg Infect Dis 22(4):625–633. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kapetanakou AE, Gkerekou MA, Vitzilaiou ES, Skandamis PN (2017) Assessing the capacity of growth, survival, and acid adaptive response of Listeria monocytogenes during storage of various cheeses and subsequent simulated gastric digestion. Int J Food Microbiol 246:50–63. CrossRefPubMedGoogle Scholar
  44. Karatzas KA, Suur L, O’Byrne CP (2012) Characterization of the intracellular glutamate decarboxylase system: analysis of its function, transcription, and role in the acid resistance of various strains of Listeria monocytogenes. Appl Environ Microbiol 78(10):3571–3579. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kastbjerg VG, Gram L (2009) Model systems allowing quantification of sensitivity to disinfectants and comparison of disinfectant susceptibility of persistent and presumed nonpersistent Listeria monocytogenes. J Appl Microbiol 106(5):1667–1681. CrossRefPubMedGoogle Scholar
  46. Katharios-Lanwermeyer S, Rakic-Martinez M, Elhanafi D, Ratani S, Tiedje JM, Kathariou S (2012) Coselection of cadmium and benzalkonium chloride resistance in conjugative transfers from nonpathogenic Listeria spp. to other Listeriae. Appl Environ Microbiol 78(21):7549–7556. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kathariou S (2002) Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J Food Prot 65(11):1811–1829CrossRefPubMedGoogle Scholar
  48. Knabel SJ, Reimer A, Verghese B, Lok M, Ziegler J, Farber J, Pagotto F, Graham M, Nadon CA, Canadian Public Health Laboratory Network, Gilmour MW (2012) Sequence typing confirms that a predominant Listeria monocytogenes clone caused human listeriosis cases and outbreaks in Canada from 1988 to 2010. J Clin Microbiol 50(5):1748–1751.
  49. Koopmans MM, Bijlsma MW, Brouwer MC, van de Beek D, van der Ende A (2017) Listeria monocytogenes meningitis in the Netherlands, 1985–2014: a nationwide surveillance study. The J Infection 75(1):12–19. CrossRefGoogle Scholar
  50. Koutsoumanis KP, Kendall PA, Sofos JN (2003) Effect of food processing-related stresses on acid tolerance of Listeria monocytogenes. Appl Environ Microbiol 69(12):7514–7516CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kovacevic J, Ziegler J, Walecka-Zacharska E, Reimer A, Kitts DD, Gilmour MW (2015) Tolerance of Listeria monocytogenes to quaternary ammonium sanitizers is mediated by a novel efflux pump encoded by emrE. Appl Environ Microbiol 82(3):939–953. CrossRefPubMedGoogle Scholar
  52. Kremer PH, Lees JA, Koopmans MM, Ferwerda B, Arends AW, Feller MM, Schipper K, Valls Seron M, van der Ende A, Brouwer MC, van de Beek D, Bentley SD (2017) Benzalkonium tolerance genes and outcome in Listeria monocytogenes meningitis. Clin Microbiol Infect 23(4):265 e1–265 e7. CrossRefGoogle Scholar
  53. Kuenne C, Billion A, Mraheil MA, Strittmatter A, Daniel R, Goesmann A, Barbuddhe S, Hain T, Chakraborty T (2013) Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome. BMC Genomics 14:47. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kwong JC, Mercoulia K, Tomita T, Easton M, Li HY, Bulach DM, Stinear TP, Seemann T, Howden BP (2016) Prospective whole-genome sequencing enhances National Surveillance of Listeria monocytogenes. J Clin Microbiol 54(2):333–342. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Laksanalamai P, Steyert SR, Burall LS, Datta AR (2013) Genome sequences of Listeria monocytogenes serotype 4b variant strains isolated from clinical and environmental sources. Genome Announcements 1(5).
  56. Leclercq A, Chenal-Francisque V, Dieye H, Cantinelli T, Drali R, Brisse S, Lecuit M (2011) Characterization of the novel Listeria monocytogenes PCR serogrouping profile IVb-v1. Int J Food Microbiol 147(1):74–77. CrossRefPubMedGoogle Scholar
  57. Lee S, Rakic-Martinez M, Graves LM, Ward TJ, Siletzky RM, Kathariou S (2013) Genetic determinants for cadmium and arsenic resistance among Listeria monocytogenes serotype 4b isolates from sporadic human listeriosis patients. Appl Environ Microbiol 79(7):2471–2476. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lee S, Ward TJ, Graves LM, Tarr CL, Siletzky RM, Kathariou S (2014) Population structure of Listeria monocytogenes serotype 4b isolates from sporadic human listeriosis cases in the United States from 2003 to 2008. Appl Environ Microbiol 80(12):3632–3644. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lee S, Ward TJ, Jima DD, Parsons C, Kathariou S (2017) The arsenic resistance-associated Listeria genomic island LGI2 exhibits sequence and integration site diversity and a propensity for three Listeria monocytogenes clones with enhanced virulence. Appl Environ Microbiol 83(21):e01189–e01117. PubMedGoogle Scholar
  60. Lianou A, Stopforth JD, Yoon Y, Wiedmann M, Sofos JN (2006) Growth and stress resistance variation in culture broth among Listeria monocytogenes strains of various serotypes and origins. J Food Prot 69(11):2640–2647CrossRefPubMedGoogle Scholar
  61. Liu X, Basu U, Miller P, McMullen LM (2017) Differential gene expression and filamentation of Listeria monocytogenes 08-5923 exposed to sodium lactate and sodium diacetate. Food Microbiol 63:153–158. CrossRefPubMedGoogle Scholar
  62. Malekmohammadi S, Kodjovi KK, Sherwood J, Bergholz TM (2017) Genetic and environmental factors influence Listeria monocytogenes nisin resistance. J Appl Microbiol 123:262–270. CrossRefGoogle Scholar
  63. Mammina C, Parisi A, Guaita A, Aleo A, Bonura C, Nastasi A, Pontello M (2013) Enhanced surveillance of invasive listeriosis in the Lombardy region, Italy, in the years 2006-2010 reveals major clones and an increase in serotype 1/2a. BMC Infect Dis 13:152. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Martinez-Suarez JV, Ortiz S, Lopez-Alonso V (2016) Potential impact of the resistance to quaternary ammonium disinfectants on the persistence of Listeria monocytogenes in food processing environments. Front Microbiol 7:638. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Maury MM, Tsai YH, Charlier C, Touchon M, Chenal-Francisque V, Leclercq A, Criscuolo A, Gaultier C, Roussel S, Brisabois A, Disson O, Rocha EP, Brisse S, Lecuit M (2016) Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat Genet 48:308–313. CrossRefPubMedPubMedCentralGoogle Scholar
  66. McCollum JT, Cronquist AB, Silk BJ, Jackson KA, O'Connor KA, Cosgrove S, Gossack JP, Parachini SS, Jain NS, Ettestad P, Ibraheem M, Cantu V, Joshi M, DuVernoy T, Fogg NW Jr, Gorny JR, Mogen KM, Spires C, Teitell P, Joseph LA, Tarr CL, Imanishi M, Neil KP, Tauxe RV, Mahon BE (2013) Multistate outbreak of listeriosis associated with cantaloupe. N Engl J Med 369(10):944–953. CrossRefPubMedGoogle Scholar
  67. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179PubMedPubMedCentralGoogle Scholar
  68. McLauchlin J, Mitchell RT, Smerdon WJ, Jewell K (2004) Listeria monocytogenes and listeriosis: a review of hazard characterisation for use in microbiological risk assessment of foods. Int J Food Microbiol 92(1):15–33. CrossRefPubMedGoogle Scholar
  69. Mereghetti L, Quentin R, Marquet-Van Der Mee N, Audurier A (2000) Low sensitivity of Listeria monocytogenes to quaternary ammonium compounds. Appl Environ Microbiol 66(11):5083–5086CrossRefPubMedPubMedCentralGoogle Scholar
  70. Milillo SR, Friedly EC, Saldivar JC, Muthaiyan A, O’Bryan C, Crandall PG, Johnson MG, Ricke SC (2012) A review of the ecology, genomics, and stress response of Listeria innocua and Listeria monocytogenes. Crit Rev Food Sci Nutr 52(8):712–725. CrossRefPubMedGoogle Scholar
  71. Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A, Tarr C, Bjorkman JT, Dallman T, Reimer A, Enouf V, Larsonneur E, Carleton H, Bracq-Dieye H, Katz LS, Jones L, Touchon M, Tourdjman M, Walker M, Stroika S, Cantinelli T, Chenal-Francisque V, Kucerova Z, Rocha EP, Nadon C, Grant K, Nielsen EM, Pot B, Gerner-Smidt P, Lecuit M, Brisse S (2016) Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nature microbiology 2:16185. CrossRefPubMedGoogle Scholar
  72. Mullapudi S, Siletzky RM, Kathariou S (2008) Heavy-metal and benzalkonium chloride resistance of Listeria monocytogenes isolates from the environment of turkey-processing plants. Appl Environ Microbiol 74(5):1464–1468. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Muller A, Rychli K, Muhterem-Uyar M, Zaiser A, Stessl B, Guinane CM, Cotter PD, Wagner M, Schmitz-Esser S (2013) Tn6188—a novel transposon in Listeria monocytogenes responsible for tolerance to benzalkonium chloride. PLoS One 8(10):e76835. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Munoz P, Rojas L, Bunsow E, Saez E, Sanchez-Cambronero L, Alcala L, Rodriguez-Creixems M, Bouza E (2012) Listeriosis: an emerging public health problem especially among the elderly. The Journal of infection 64(1):19–33. CrossRefPubMedGoogle Scholar
  75. NicAogain K, O’Byrne CP (2016) The role of stress and stress adaptations in determining the fate of the bacterial pathogen Listeria monocytogenes in the food chain. Front Microbiol 7:1865. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Norton DM, Braden C (2007) Foodborne Listeriosis. In: Ryser ET (ed) Listeria, Listeriosis, and food safety. 3rd edn. CRC Press, Boca Raton, pp 305–356Google Scholar
  77. Orsi RH, den Bakker HC, Wiedmann M (2011) Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 301(2):79–96. CrossRefPubMedGoogle Scholar
  78. Painter J, Slutsker L (2007) Listeriosis in humans. In: Ryser ET, Marth EH (eds) Listeria, Listeriosis, and food safety. 3rd edn. CRC press, Boca Raton, pp 85–110Google Scholar
  79. Parsons C, Lee S, Jayeola V, Kathariou S (2017) Novel cadmium resistance determinant in Listeria monocytogenes. Appl Environ Microbiol 83(5):e02580–e02516. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Piffaretti JC, Kressebuch H, Aeschbacher M, Bille J, Bannerman E, Musser JM, Selander RK, Rocourt J (1989) Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease. Proc Natl Acad Sci U S A 86(10):3818–3822CrossRefPubMedPubMedCentralGoogle Scholar
  81. Pontello M, Guaita A, Sala G, Cipolla M, Gattuso A, Sonnessa M, Gianfranceschi MV (2012) Listeria monocytogenes serotypes in human infections (Italy, 2000-2010). Annali dell'Istituto Superiore di Sanita 48(2):146–150. CrossRefPubMedGoogle Scholar
  82. Quereda JJ, Meza-Torres J, Cossart P, Pizarro-Cerda J (2017) Listeriolysin S: a bacteriocin from epidemic Listeria monocytogenes strains that targets the gut microbiota. Gut Microbes 8(4):384–391. CrossRefPubMedPubMedCentralGoogle Scholar
  83. Ragon M, Wirth T, Hollandt F, Lavenir R, Lecuit M, Le Monnier A, Brisse S (2008) A new perspective on Listeria monocytogenes evolution. PLoS Pathog 4(9):e1000146. CrossRefPubMedPubMedCentralGoogle Scholar
  84. Rakic Martinez M, Wiedmann M, Ferguson M, Datta AR (2017) Assessment of Listeria monocytogenes virulence in the Galleria mellonella insect larvae model. PLoS One 12(9):e0184557. CrossRefPubMedPubMedCentralGoogle Scholar
  85. Ribeiro VB, Destro MT (2014) Listeria monocytogenes serotype 1/2b and 4b isolates from human clinical cases and foods show differences in tolerance to refrigeration and salt stress. J Food Prot 77(9):1519–1526. CrossRefPubMedGoogle Scholar
  86. Ribeiro VB, Mujahid S, Orsi RH, Bergholz TM, Wiedmann M, Boor KJ, Destro MT (2014) Contributions of sigma(B) and PrfA to Listeria monocytogenes salt stress under food relevant conditions. Int J Food Microbiol 177:98–108. CrossRefPubMedGoogle Scholar
  87. Salazar JK, Carstens CK, Bathija VM, Narula SS, Parish M, Tortorello ML (2016) Fate of Listeria monocytogenes in fresh apples and caramel apples. J Food Prot 79(5):696–702. CrossRefPubMedGoogle Scholar
  88. Sewell D, Allen S, Phillips CA (2015) Oxygen limitation induces acid tolerance and impacts simulated gastro-intestinal transit in Listeria monocytogenes J0161. Gut pathogens 7:11. CrossRefPubMedPubMedCentralGoogle Scholar
  89. Soumet C, Ragimbeau C, Maris P (2005) Screening of benzalkonium chloride resistance in Listeria monocytogenes strains isolated during cold smoked fish production. Lett Appl Microbiol 41(3):291–296. CrossRefPubMedGoogle Scholar
  90. Stasiewicz MJ, Wiedmann M, Bergholz TM (2011) The transcriptional response of Listeria monocytogenes during adaptation to growth on lactate and diacetate includes synergistic changes that increase fermentative acetoin production. Appl Environ Microbiol 77(15):5294–5306CrossRefPubMedPubMedCentralGoogle Scholar
  91. Swaminathan B, Cabanes D, Zhang W, Cossart P (2007) Listeria monocytogenes. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers. 3rd edn. ASM press, Washington DCGoogle Scholar
  92. Tan MF, Siow CC, Dutta A, Mutha NV, Wee WY, Heydari H, Tan SY, Ang MY, Wong GJ, Choo SW (2015) Development of ListeriaBase and comparative analysis of Listeria monocytogenes. BMC Genomics 16(1):755. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Tasara T, Stephan R (2006) Cold stress tolerance of Listeria monocytogenes: a review of molecular adaptive mechanisms and food safety implications. J Food Prot 69(6):1473–1484CrossRefPubMedGoogle Scholar
  94. To MS, Favrin S, Romanova N, Griffiths MW (2002) Postadaptational resistance to benzalkonium chloride and subsequent physicochemical modifications of Listeria monocytogenes. Appl Environ Microbiol 68:5258–5264CrossRefPubMedPubMedCentralGoogle Scholar
  95. van Schaik W, Gahan CG, Hill C (1999) Acid-adapted Listeria monocytogenes displays enhanced tolerance against the lantibiotics nisin and lacticin 3147. J Food Prot 62(5):536–539CrossRefPubMedGoogle Scholar
  96. Vermeulen A, Gysemans KP, Bernaerts K, Geeraerd AH, Van Impe JF, Debevere J, Devlieghere F (2007) Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7 degrees C: data collection for the development of a growth/no growth model. Int J Food Microbiol 114(3):332–341. CrossRefPubMedGoogle Scholar
  97. Wang Y, Zhao A, Zhu R, Lan R, Jin D, Cui Z, Wang Y, Li Z, Wang Y, Xu J, Ye C (2012) Genetic diversity and molecular typing of Listeria monocytogenes in China. BMC Microbiol 12:119. CrossRefPubMedPubMedCentralGoogle Scholar
  98. Ward TJ, Ducey TF, Usgaard T, Dunn KA, Bielawski JP (2008) Multilocus genotyping assays for single nucleotide polymorphism-based subtyping of Listeria monocytogenes isolates. Appl Environ Microbiol 74(24):7629–7642CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Department of Microbiological SciencesNorth Dakota State UniversityFargoUSA
  2. 2.Center for Food Safety and Applied NutritionFood and Drug AdministrationLaurelUSA

Personalised recommendations