Applied Microbiology and Biotechnology

, Volume 102, Issue 7, pp 2977–2996 | Cite as

Dengue viruses and promising envelope protein domain III-based vaccines

  • Hossein Fahimi
  • Mahshid Mohammadipour
  • Hamed Haddad Kashani
  • Farshid Parvini
  • Majid Sadeghizadeh


Dengue viruses are emerging mosquito-borne pathogens belonging to Flaviviridae family which are transmitted to humans via the bites of infected mosquitoes Aedes aegypti and Aedes albopictus. Because of the wide distribution of these mosquito vectors, more than 2.5 billion people are approximately at risk of dengue infection. Dengue viruses cause dengue fever and severe life-threatening illnesses as well as dengue hemorrhagic fever and dengue shock syndrome. All four serotypes of dengue virus can cause dengue diseases, but the manifestations are nearly different depending on type of the virus in consequent infections. Infection by any serotype creates life-long immunity against the corresponding serotype and temporary immunity to the others. This transient immunity declines after a while (6 months to 2 years) and is not protective against other serotypes, even may enhance the severity of a secondary heterotypic infection with a different serotype through a phenomenon known as antibody-depended enhancement (ADE). Although, it can be one of the possible explanations for more severe dengue diseases in individuals infected with a different serotype after primary infection. The envelope protein (E protein) of dengue virus is responsible for a wide range of biological activities, including binding to host cell receptors and fusion to and entry into host cells. The E protein, and especially its domain III (EDIII), stimulates host immunity responses by inducing protective and neutralizing antibodies. Therefore, the dengue E protein is an important antigen for vaccine development and diagnostic purposes. Here, we have provided a comprehensive review of dengue disease, vaccine design challenges, and various approaches in dengue vaccine development with emphasizing on newly developed envelope domain III-based dengue vaccine candidates.


Dengue virus Envelope protein Chimeric vaccine Disease Immunogenicity 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Alvarez M, Rodriguez-Roche R, Bernardo L, Vazquez S, Morier L, Gonzalez D, Castro O, Kouri G, Halstead SB, Guzman MG (2006) Dengue hemorrhagic fever caused by sequential dengue 1–3 virus infections over a long time interval: Havana epidemic, 2001–2002. Am J Trop Med Hyg 75(6):1113–1117PubMedGoogle Scholar
  2. Amitai G, Callahan BP, Stanger MJ, Belfort G, Belfort M (2009) Modulation of intein activity by its neighboring extein substrates. Proc Natl Acad Sci 106(27):11005–11010PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anantapreecha S, Chanama S, A-nuegoonpipat A, Naemkhunthot S, Sa-Ngasang A, Sawanpanyalert P, Kurane I (2005) Serological and virological features of dengue fever and dengue haemorrhagic fever in Thailand from 1999 to 2002. Epidemiol Infect 133(3):503–507PubMedPubMedCentralCrossRefGoogle Scholar
  4. Apt D, Raviprakash K, Brinkman A, Semyonov A, Yang S, Skinner C, Diehl L, Lyons R, Porter K, Punnonen J (2006) Tetravalent neutralizing antibody response against four dengue serotypes by a single chimeric dengue envelope antigen. Vaccine 24(3):335–344PubMedCrossRefGoogle Scholar
  5. Arora U, Tyagi P, Swaminathan S, Khanna N (2012) Chimeric Hepatitis B core antigen virus-like particles displaying the envelope domain III of dengue virus type 2. J Nanobiotechnol 10(1):30CrossRefGoogle Scholar
  6. Babu JP, Pattnaik P, Gupta N, Shrivastava A, Khan M, Rao PL (2008) Immunogenicity of a recombinant envelope domain III protein of dengue virus type-4 with various adjuvants in mice. Vaccine 26(36):4655–4663PubMedCrossRefGoogle Scholar
  7. Balsitis SJ, Williams KL, Lachica R, Flores D, Kyle JL, Mehlhop E, Johnson S, Diamond MS, Beatty PR, Harris E (2010) Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog 6(2):e1000790PubMedPubMedCentralCrossRefGoogle Scholar
  8. Batra G, Gurramkonda C, Nemani SK, Jain SK, Swaminathan S, Khanna N (2010) Optimization of conditions for secretion of dengue virus type 2 envelope domain III using Pichia pastoris. J Biosci Bioeng 110(4):408–414PubMedCrossRefGoogle Scholar
  9. Bernardo L, Izquierdo A, Alvarez M, Rosario D, Prado I, López C, Martínez R, Castro J, Santana E, Hermida L (2008) Immunogenicity and protective efficacy of a recombinant fusion protein containing the domain III of the dengue 1 envelope protein in non-human primates. Antivir Res 80(2):194–199PubMedCrossRefGoogle Scholar
  10. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O (2013) The global distribution and burden of dengue. Nature 496(7446):504PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bischof GF, Magnani DM, Ricciardi M, Shin YC, Domingues A, Bailey VK, Gonzalez-Nieto L, Rakasz EG, Watkins DI, Desrosiers RC (2017) Use of a recombinant gamma-2 herpesvirus vaccine vector against dengue virus in rhesus monkeys. J Virol 91:00525–00517CrossRefGoogle Scholar
  12. Blair PJ, Kochel TJ, Raviprakash K, Guevara C, Salazar M, Wu S-J, Olson JG, Porter KR (2006) Evaluation of immunity and protective efficacy of a dengue-3 premembrane and envelope DNA vaccine in Aotus nancymae monkeys. Vaccine 24(9):1427–1432PubMedCrossRefGoogle Scholar
  13. Blaney JE, Sathe NS, Hanson CT, Firestone CY, Murphy BR, Whitehead SS (2007) Vaccine candidates for dengue virus type 1 (DEN1) generated by replacement of the structural genes of rDEN4 and rDEN4Δ30 with those of DEN1. Virol J 4(1):23PubMedPubMedCentralCrossRefGoogle Scholar
  14. Blaney JE, Sathe NS, Goddard L, Hanson CT, Romero TA, Hanley KA, Murphy BR, Whitehead SS (2008) Dengue virus type 3 vaccine candidates generated by introduction of deletions in the 3′ untranslated region (3′-UTR) or by exchange of the DENV-3 3′-UTR with that of DENV-4. Vaccine 26(6):817–828PubMedCrossRefGoogle Scholar
  15. Block OK, Rodrigo WSI, Quinn M, Jin X, Rose RC, Schlesinger JJ (2010) A tetravalent recombinant dengue domain III protein vaccine stimulates neutralizing and enhancing antibodies in mice. Vaccine 28(51):8085–8094PubMedCrossRefGoogle Scholar
  16. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI (2012) Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6(8):e1760PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brandler S, Lucas-Hourani M, Moris A, Frenkiel M-P, Combredet C, Février M, Bedouelle H, Schwartz O, Desprès P, Tangy F (2007) Pediatric measles vaccine expressing a dengue antigen induces durable serotype-specific neutralizing antibodies to dengue virus. PLoS Negl Trop Dis 1(3):e96PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brandler S, Ruffie C, Najburg V, Frenkiel M-P, Bedouelle H, Desprès P, Tangy F (2010) Pediatric measles vaccine expressing a dengue tetravalent antigen elicits neutralizing antibodies against all four dengue viruses. Vaccine 28(41):6730–6739PubMedCrossRefGoogle Scholar
  19. Bravo J, Guzman M, Kouri G (1987) Why dengue haemorrhagic fever in Cuba? I. Individual risk factors for dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS). Trans R Soc Trop Med Hyg 81(5):816–820PubMedCrossRefGoogle Scholar
  20. Chávez JH, Silva JR, Amarilla AA, Figueiredo LTM (2010) Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization. Biologicals 38(6):613–618PubMedCrossRefGoogle Scholar
  21. Chen S, Yu M, Jiang T, Deng Y, Qin C, Qin E (2007) Induction of tetravalent protective immunity against four dengue serotypes by the tandem domain III of the envelope protein. DNA Cell Biol 26(6):361–367PubMedCrossRefGoogle Scholar
  22. Chen H-W, Liu S-J, Liu H-H, Kwok Y, Lin C-L, Lin L-H, Chen M-Y, Tsai J-P, Chang L-S, Chiu F-F (2009) A novel technology for the production of a heterologous lipoprotein immunogen in high yield has implications for the field of vaccine design. Vaccine 27(9):1400–1409PubMedCrossRefGoogle Scholar
  23. Chen H-W, Liu S-J, Li Y-S, Liu H-H, Tsai J-P, Chiang C-Y, Chen M-Y, Hwang C-S, Huang C-C, Hu H-M (2013) A consensus envelope protein domain III can induce neutralizing antibody responses against serotype 2 of dengue virus in non-human primates. Arch Virol 158(7):1523–1531PubMedCrossRefGoogle Scholar
  24. Chen XY, Li DZ, Zhong XZ, Chen B, Duan ZL, Wen JS (2016) Induction of multiple cytotoxic T lymphocyte responses in mice by a multiepitope DNA vaccine against dengue virus serotype 1. Microbiol Immunol 60(12):835–845PubMedCrossRefGoogle Scholar
  25. Chiang C-Y, Huang M-H, Hsieh C-H, Chen M-Y, Liu H-H, Tsai J-P, Li Y-S, Chang C-Y, Liu S-J, Chong P (2012) Dengue-1 envelope protein domain III along with PELC and CpG oligodeoxynucleotides synergistically enhances immune responses. PLoS Negl Trop Dis 6(5):e1645PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chiang C-Y, Huang M-H, Pan C-H, Hsieh C-H, Chen M-Y, Liu H-H, Tsai J-P, Liu S-J, Chong P, Leng C-H (2013) Induction of robust immunity by the emulsification of recombinant lipidated dengue-1 envelope protein domain III. Microbes Infect 15(10):719–728PubMedCrossRefGoogle Scholar
  27. Chiang C-Y, Liu S-J, Hsieh C-H, Chen M-Y, Tsai J-P, Liu H-H, Chen I-H, Chong P, Leng C-H, Chen H-W (2016a) Recombinant lipidated dengue-3 envelope protein domain III stimulates broad immune responses in mice. Vaccine 34(8):1054–1061PubMedCrossRefGoogle Scholar
  28. Chiang C-Y, Pan C-H, Chen M-Y, Hsieh C-H, Tsai J-P, Liu H-H, Liu S-J, Chong P, Leng C-H, Chen H-W (2016b) Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice. Sci Rep 6:30648PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chin J, Chu J, Ng M (2007) The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes Infect 9(1):1–6PubMedCrossRefGoogle Scholar
  30. Clements DE, Coller B-AG, Lieberman MM, Ogata S, Wang G, Harada KE, Putnak JR, Ivy JM, McDonell M, Bignami GS (2010) Development of a recombinant tetravalent dengue virus vaccine: immunogenicity and efficacy studies in mice and monkeys. Vaccine 28(15):2705–2715PubMedPubMedCentralCrossRefGoogle Scholar
  31. Coconi-Linares N, Ortega-Dávila E, López-González M, García-Machorro J, García-Cordero J, Steinman RM, Cedillo-Barrón L, Gómez-Lim MA (2013) Targeting of envelope domain III protein of DENV type 2 to DEC-205 receptor elicits neutralizing antibodies in mice. Vaccine 31(19):2366–2371PubMedCrossRefGoogle Scholar
  32. Crill WD, Roehrig JT (2001) Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol 75(16):7769–7773PubMedPubMedCentralCrossRefGoogle Scholar
  33. Delenda C, Staropoli I, Frenkiel M-P, Cabanié L, Deubel V (1994) Analysis of C-terminally truncated dengue 2 and dengue 3 virus envelope glycoproteins: processing in insect cells and immunogenic properties in mice. J Gen Virol 75(7):1569–1578PubMedCrossRefGoogle Scholar
  34. Durbin AP, Whitehead SS, McArthur J, Perreault JR, Blaney Jr JE, Thumar B, Murphy BR, Karron RA (2005) rDEN4Δ30, a live attenuated dengue virus type 4 vaccine candidate, is safe, immunogenic, and highly infectious in healthy adult volunteers. J Infect Dis 191(5):710–718PubMedCrossRefGoogle Scholar
  35. Edelman R, Hombach J (2008) “Guidelines for the clinical evaluation of dengue vaccines in endemic areas”: summary of a World Health Organization technical consultation. Vaccine 26(33):4113–4119PubMedCrossRefGoogle Scholar
  36. Edelman R, Wasserman SS, Bodison SA, Putnak RJ, Eckels KH, Tang D, Kanesa-Thasan N, Vaughn DW, Innis BL, Sun W (2003) Phase I trial of 16 formulations of a tetravalent live-attenuated dengue vaccine. Am J Trop Med Hyg 69(6_suppl):48–60PubMedCrossRefGoogle Scholar
  37. Etemad B, Batra G, Raut R, Dahiya S, Khanam S, Swaminathan S, Khanna N (2008) An envelope domain III-based chimeric antigen produced in Pichia pastoris elicits neutralizing antibodies against all four dengue virus serotypes. Am J Trop Med Hyg 79(3):353–363PubMedGoogle Scholar
  38. Fahimi H, Allahyari H, Hassan ZM, Sadeghizadeh M (2014) Dengue virus type-3 envelope protein domain III; expression and immunogenicity. Iran J Basic Med Sci 17(11):836PubMedPubMedCentralGoogle Scholar
  39. Fahimi H, Sadeghizadeh M, Mohammadipour M (2016) In silico analysis of an envelope domain III-based multivalent fusion protein as a potential dengue vaccine candidate. Clin Exp Vaccine Res 5(1):41–49PubMedPubMedCentralCrossRefGoogle Scholar
  40. Falconar AK (2007) Antibody responses are generated to immunodominant ELK/KLE-type motifs on the nonstructural-1 glycoprotein during live dengue virus infections in mice and humans: implications for diagnosis, pathogenesis, and vaccine design. Clin Vaccine Immunol 14(5):493–504PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fonseca BA, Khoshnood K, Shope RE, Mason PW (1991) Flavivirus type-specific antigens produced from fusions of a portion of the E protein gene with the Escherichia coli trpE gene. Am J Trop Med Hyg 44(5):500–508PubMedCrossRefGoogle Scholar
  42. Fried JR, Gibbons RV, Kalayanarooj S, Thomas SJ, Srikiatkhachorn A, Yoon I-K, Jarman RG, Green S, Rothman AL, Cummings DA (2010) Serotype-specific differences in the risk of dengue hemorrhagic fever: an analysis of data collected in Bangkok, Thailand from 1994 to 2006. PLoS Negl Trop Dis 4(3):e617. PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gil L, Marcos E, Izquierdo A, Lazo L, Valdés I, Ambala P, Ochola L, Hitler R, Suzarte E, Álvarez M (2015) The protein DIIIC-2, aggregated with a specific oligodeoxynucleotide and adjuvanted in alum, protects mice and monkeys against DENV-2. Immunol Cell Biol 93(1):57–66PubMedCrossRefGoogle Scholar
  44. Gil L, Lazo L, Valdés I, Suzarte E, Yen P, Ramírez R, Álvarez M, Dung LT, Cobas K, Marcos E (2017) The tetravalent formulation of domain III-capsid proteins recalls memory B-and T-cell responses induced in monkeys by an experimental dengue virus infection. Clin Transl Immunol 6(6):e148. CrossRefGoogle Scholar
  45. Goeddel DV (1990) [1] Systems for heterologous gene expression. Methods Enzymol 185:3–7PubMedCrossRefGoogle Scholar
  46. Gonçalves AJ, Oliveira ER, Costa SM, Paes MV, Silva JF, Azevedo AS, Mantuano-Barradas M, Nogueira ACM, Almeida CJ, Alves AM (2015) Cooperation between CD4+ T cells and humoral immunity is critical for protection against dengue using a DNA vaccine based on the NS1 antigen. PLoS Negl Trop Dis 9(12):e0004277. PubMedPubMedCentralCrossRefGoogle Scholar
  47. González D, Castro OE, Kourí G, Perez J, Martinez E, Vazquez S, Rosario D, Cancio R, Guzman MG (2005) Classical dengue hemorrhagic fever resulting from two dengue infections spaced 20 years or more apart: Havana, Dengue 3 epidemic, 2001–2002. Int J Infect Dis 9(5):280–285PubMedCrossRefGoogle Scholar
  48. Gromowski GD, Barrett ND, Barrett AD (2008) Characterization of dengue virus complex-specific neutralizing epitopes on envelope protein domain III of dengue 2 virus. J Virol 82(17):8828–8837PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10(2):100–103PubMedCrossRefGoogle Scholar
  50. Gunther V, Putnak R, Eckels K, Mammen M, Scherer J, Lyons A, Sztein M, Sun W (2011) A human challenge model for dengue infection reveals a possible protective role for sustained interferon gamma levels during the acute phase of illness. Vaccine 29(22):3895–3904PubMedCrossRefGoogle Scholar
  51. Guy B, Almond JW (2008) Towards a dengue vaccine: progress to date and remaining challenges. Comp Immunol Microbiol Infect Dis 31(2):239–252PubMedCrossRefGoogle Scholar
  52. Guy B, Nougarede N, Begue S, Sanchez V, Souag N, Carre M, Chambonneau L, Morrisson DN, Shaw D, Qiao M (2008) Cell-mediated immunity induced by chimeric tetravalent dengue vaccine in naive or flavivirus-primed subjects. Vaccine 26(45):5712–5721PubMedCrossRefGoogle Scholar
  53. Guy B, Noriega F, Ochiai RL, L’azou M, Delore V, Skipetrova A, Verdier F, Coudeville L, Savarino S, Jackson N (2017) A recombinant live attenuated tetravalent vaccine for the prevention of dengue. Expert Rev Vaccines 16(7):1–13PubMedCrossRefGoogle Scholar
  54. Guzman MG, Hermida L, Bernardo L, Ramirez R, Guillén G (2010) Domain III of the envelope protein as a dengue vaccine target. Expert Rev Vaccines 9(2):137–147PubMedCrossRefGoogle Scholar
  55. Haddad Kashani H, Fahimi H, Dasteh Goli Y, Moniri R (2017) A novel chimeric endolysin with antibacterial activity against methicillin-resistant Staphylococcus aureus. Front Cell Infect Microbiol 7:290PubMedPubMedCentralCrossRefGoogle Scholar
  56. Halstead SB (1988) Pathogenesis of dengue: challenges to molecular biology. Science 239(4839):476–481PubMedCrossRefGoogle Scholar
  57. Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60:421–467PubMedCrossRefGoogle Scholar
  58. Henchal EA, Putnak JR (1990) The dengue viruses. Clin Microbiol Rev 3(4):376–396PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hermida L, Rodríguez R, Lazo L, Bernardo L, Silva R, Zulueta A, Lopez C, Martín J, Valdés I, Del Rosario D (2004) A fragment of the envelope protein from dengue-1 virus, fused in two different sites of the meningococcal P64k protein carrier, induces a functional immune response in mice. Biotechnol Appl Biochem 39(1):107–114PubMedCrossRefGoogle Scholar
  60. Hermida L, Bernardo L, Martín J, Alvarez M, Prado I, López C, Sierra BC, Martínez R, Rodríguez R, Zulueta A (2006) A recombinant fusion protein containing the domain III of the dengue-2 envelope protein is immunogenic and protective in nonhuman primates. Vaccine 24(16):3165–3171PubMedCrossRefGoogle Scholar
  61. Hosseini ES, Moniri R, Goli YD, Kashani HH (2016) Purification of antibacterial CHAPK protein using a self-cleaving fusion tag and its activity against methicillin-resistant Staphylococcus aureus. Probiotics Antimicrob Proteins 8(4):202–210PubMedCrossRefGoogle Scholar
  62. Huang K-J, Yang Y-C, Lin Y-S, Huang J-H, Liu H-S, Yeh T-M, Chen S-H, Liu C-C, Lei H-Y (2006) The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. J Immunol 176(5):2825–2832PubMedCrossRefGoogle Scholar
  63. Huleatt JW, Foellmer HG, Hewitt D, Tang J, Desai P, Price A, Jacobs A, Takahashi VN, Huang Y, Nakaar V (2007) A West Nile virus recombinant protein vaccine that coactivates innate and adaptive immunity. J Infect Dis 195(11):1607–1617PubMedCrossRefGoogle Scholar
  64. Hung J-J, Hsieh M-T, Young M-J, Kao C-L, King C-C, Chang W (2004) An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol 78(1):378–388PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hurtado-Melgoza M, Ramos-Ligonio A, Álvarez-Rodríguez L, Meza-Menchaca T, López-Monteon A (2016) Differential humoral and cellular immunity induced by vaccination using plasmid DNA and protein recombinant expressing the NS3 protein of dengue virus type 3. J Biomed Sci 23(1):85PubMedPubMedCentralCrossRefGoogle Scholar
  66. Innis BL, Eckels KH (2003) Progress in development of a live-attenuated, tetravalent dengue virus vaccine by the United States Army Medical Research and Materiel Command. Am J Trop Med Hyg 69(6 suppl):1–4PubMedCrossRefGoogle Scholar
  67. Izquierdo A, García A, Lazo L, Gil L, Marcos E, Alvarez M, Valdés I, Hermida L, Guillén G, Guzmán MG (2014) A tetravalent dengue vaccine containing a mix of domain III-P64k and domain III-capsid proteins induces a protective response in mice. Arch Virol 159(10):2597–2604PubMedCrossRefGoogle Scholar
  68. Jaiswal S, Khanna N, Swaminathan S (2004) High-level expression and one-step purification of recombinant dengue virus type 2 envelope domain III protein in Escherichia coli. Protein Expr Purif 33(1):80–91PubMedCrossRefGoogle Scholar
  69. Kashani HH, Moniri R (2015) Expression of recombinant pET22b-LysK-cysteine/histidine-dependent amidohydrolase/peptidase bacteriophage therapeutic protein in Escherichia coli BL21 (DE3). Osong Public Health Res Perspect 6(4):256–260PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kashani HH, Schmelcher M, Sabzalipoor H, Hosseini ES, Moniri R (2018) Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Rev 31(1):e00071–e00017Google Scholar
  71. Kelly EP, Greene JJ, King AD, Innis BL (2000) Purified dengue 2 virus envelope glycoprotein aggregates produced by baculovirus are immunogenic in mice. Vaccine 18(23):2549–2559PubMedCrossRefGoogle Scholar
  72. Khanam S, Etemad B, Khanna N, Swaminathan S (2006) Induction of neutralizing antibodies specific to dengue virus serotypes 2 and 4 by a bivalent antigen composed of linked envelope domains III of these two serotypes. Am J Trop Med Hyg 74(2):266–277PubMedGoogle Scholar
  73. Khanam S, Rajendra P, Khanna N, Swaminathan S (2007) An adenovirus prime/plasmid boost strategy for induction of equipotent immune responses to two dengue virus serotypes. BMC Biotechnol 7(1):10PubMedPubMedCentralCrossRefGoogle Scholar
  74. Khanam S, Pilankatta R, Khanna N, Swaminathan S (2009) An adenovirus type 5 (AdV5) vector encoding an envelope domain III-based tetravalent antigen elicits immune responses against all four dengue viruses in the presence of prior AdV5 immunity. Vaccine 27(43):6011–6021PubMedCrossRefGoogle Scholar
  75. Khetarpal N, Shukla R, Rajpoot RK, Poddar A, Pal M, Swaminathan S, Arora U, Khanna N (2017) Recombinant dengue virus 4 envelope glycoprotein virus-like particles derived from Pichia pastoris are capable of eliciting homotypic domain III-directed neutralizing antibodies. Am J Trop Med Hyg 96(1):126–134PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kim M-Y, Yang M-S, Kim T-G (2012) Expression of a consensus dengue virus envelope protein domain III in transgenic callus of rice. Plant Cell Tissue Organ Cult (PCTOC) 109(3):509–515CrossRefGoogle Scholar
  77. Kim T-G, Kim M-Y, Huy N-X, Kim S-H, Yang M-S (2013) M cell-targeting ligand and consensus dengue virus envelope protein domain III fusion protein production in transgenic rice calli. Mol Biotechnol 54(3):880–887PubMedCrossRefGoogle Scholar
  78. Kim M-Y, Kim B-Y, Oh S-M, Reljic R, Jang Y-S, Yang M-S (2016) Oral immunisation of mice with transgenic rice calli expressing cholera toxin B subunit fused to consensus dengue cEDIII antigen induces antibodies to all four dengue serotypes. Plant Mol Biol 92(3):347–356PubMedCrossRefGoogle Scholar
  79. Kliks SC, Nimmanitya S, Nisalak A, Burke DS (1988) Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg 38(2):411–419PubMedCrossRefGoogle Scholar
  80. Konishi E, Yamaoka M, Kurane I, Mason PW (2000) A DNA vaccine expressing dengue type 2 virus premembrane and envelope genes induces neutralizing antibody and memory B cells in mice. Vaccine 18(11):1133–1139PubMedCrossRefGoogle Scholar
  81. Konishi E, Kosugi S, Imoto J-i (2006) Dengue tetravalent DNA vaccine inducing neutralizing antibody and anamnestic responses to four serotypes in mice. Vaccine 24(12):2200–2207PubMedCrossRefGoogle Scholar
  82. Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108(5):717–725PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kuruvilla JG, Troyer RM, Devi S, Akkina R (2007) Dengue virus infection and immune response in humanized RAG2−/− γ c−/−(RAG-hu) mice. Virology 369(1):143–152PubMedCrossRefGoogle Scholar
  84. Lazo Vázquez L, Gil González L, Marcos López E, Pérez Fuentes Y, Cervetto de Armas L, Brown Richards E, Valdés Prado I, Suzarte Portal E, Cobas Acosta K, Yaugel Novoa M (2017) Evaluation in mice of the immunogenicity of a tetravalent subunit vaccine candidate against dengue virus using mucosal and parenteral immunization routes. Viral Immunol 30(5):350–358PubMedCrossRefGoogle Scholar
  85. Lazo L, Zulueta A, Hermida L, Blanco A, Sánchez J, Valdés I, Gil L, López C, Romero Y, Guzmán MG (2009) Dengue-4 envelope domain III fused twice within the meningococcal P64k protein carrier induces partial protection in mice. Biotechnol Appl Biochem 52(4):265–271PubMedCrossRefGoogle Scholar
  86. Lazo L, Gil L, Lopez C, Valdes I, Marcos E, Álvarez M, Blanco A, Romero Y, Falcon V, Guzmán MG (2010) Nucleocapsid-like particles of dengue-2 virus enhance the immune response against a recombinant protein of dengue-4 virus. Arch Virol 155(10):1587–1595PubMedCrossRefGoogle Scholar
  87. Leng C-H, Liu S-J, Tsai J-P, Li Y-S, Chen M-Y, Liu H-H, Lien S-P, Yueh A, Hsiao K-N, Lai L-W (2009) A novel dengue vaccine candidate that induces cross-neutralizing antibodies and memory immunity. Microbes Infect 11(2):288–295PubMedCrossRefGoogle Scholar
  88. Leng C-H, Chen H-W, Chang L-S, Liu H-H, Liu H-Y, Sher Y-P, Chang Y-W, Lien S-P, Huang T-Y, Chen M-Y (2010) A recombinant lipoprotein containing an unsaturated fatty acid activates NF-κB through the TLR2 signaling pathway and induces a differential gene profile from a synthetic lipopeptide. Mol Immunol 47(11):2015–2021PubMedCrossRefGoogle Scholar
  89. Li X-Q, Qiu L-W, Chen Y, Wen K, Cai J-P, Chen J, Pan Y-X, Li J, Hu D-M, Huang Y-F (2013) Dengue virus envelope domain III immunization elicits predominantly cross-reactive, poorly neutralizing antibodies localized to the AB loop: implications for dengue vaccine design. J Gen Virol 94(10):2191–2201PubMedCrossRefGoogle Scholar
  90. Liao M, Kielian M (2005) Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion. J Cell Biol 171(1):111–120PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lima DM, de Paula SO, de Oliveira Franca RF, Palma PV, Morais FR, Gomes-Ruiz AC, de Aquino MTP, da Fonseca BAL (2011) A DNA vaccine candidate encoding the structural prM/E proteins elicits a strong immune response and protects mice against dengue-4 virus infection. Vaccine 29(4):831–838PubMedCrossRefGoogle Scholar
  92. Lin B, Parrish CR, Murray JM, Wright PJ (1994) Localization of a neutralizing epitope on the envelope protein of dengue virus type 2. Virology 202(2):885–890PubMedCrossRefGoogle Scholar
  93. Lin C-F, Wan S-W, Chen M-C, Lin S-C, Cheng C-C, Chiu S-C, Hsiao Y-L, Lei H-Y, Liu H-S, Yeh T-M (2008) Liver injury caused by antibodies against dengue virus nonstructural protein 1 in a murine model. Lab Investig 88(10):1079PubMedCrossRefGoogle Scholar
  94. Lindenbach BD (2001) Flaviviridae. In: Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 991–1042Google Scholar
  95. Mani S, Tripathi L, Raut R, Tyagi P, Arora U, Barman T, Sood R, Galav A, Wahala W, de Silva A (2013) Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies. PLoS One 8(5):e64595. PubMedPubMedCentralCrossRefGoogle Scholar
  96. Marcos E, Gil L, Lazo L, Izquierdo A, Brown E, Suzarte E, Valdés I, García A, Méndez L, Guzmán MG (2013) Purified and highly aggregated chimeric protein DIIIC-2 induces a functional immune response in mice against dengue 2 virus. Arch Virol 158(1):225–230PubMedCrossRefGoogle Scholar
  97. Mason PW, Zügel MU, Semproni AR, Fournier MJ, Mason TL (1990) The antigenic structure of dengue type 1 virus envelope and NS1 proteins expressed in Escherichia coli. J Gen Virol 71(9):2107–2114PubMedCrossRefGoogle Scholar
  98. McArthur JH, Durbin AP, Marron JA, Wanionek KA, Thumar B, Pierro DJ, Schmidt AC, Blaney JE Jr, Murphy BR, Whitehead SS (2008) Phase I clinical evaluation of rDEN4Δ30-200,201: a live attenuated dengue 4 vaccine candidate designed for decreased hepatotoxicity. Am J Trop Med Hyg 79(5):678–684PubMedPubMedCentralGoogle Scholar
  99. McBurney SP, Sunshine JE, Gabriel S, Huynh JP, Sutton WF, Fuller DH, Haigwood NL, Messer WB (2016) Evaluation of protection induced by a dengue virus serotype 2 envelope domain III protein scaffold/DNA vaccine in non-human primates. Vaccine 34(30):3500–3507PubMedPubMedCentralCrossRefGoogle Scholar
  100. Miller N (2010) Recent progress in dengue vaccine research and development. Curr Opin Mol Ther 12(1):31–38PubMedGoogle Scholar
  101. Modis Y, Ogata S, Clements D, Harrison SC (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci 100(12):6986–6991PubMedPubMedCentralCrossRefGoogle Scholar
  102. Modis Y, Ogata S, Clements D, Harrison SC (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature 427(6972):313–319PubMedCrossRefGoogle Scholar
  103. Modis Y, Ogata S, Clements D, Harrison SC (2005) Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79(2):1223–1231PubMedPubMedCentralCrossRefGoogle Scholar
  104. Mongkolsapaya J, Dejnirattisai W, Xiao-ning X, Vasanawathana S, Tangthawornchaikul N, Chairunsri A, Sawasdivorn S, Duangchinda T, Dong T, Rowland-Jones S (2003) Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 9(7):921PubMedCrossRefGoogle Scholar
  105. Montes-Gómez AE, Vivanco-Cid H, Bustos-Arriaga J, Zaidi MB, Garcia-Machorro J, Gutierrez-Castañeda B, Cedillo-Barron L (2017) Construct and expression of recombinant domains I/II of dengue virus-2 and its efficacy to evaluate immune response in endemic area: possible use in prognosis. Acta Trop 171:233–238PubMedCrossRefGoogle Scholar
  106. Montoya M, Gresh L, Mercado JC, Williams KL, Vargas MJ, Gutierrez G, Kuan G, Gordon A, Balmaseda A, Harris E (2013) Symptomatic versus inapparent outcome in repeat dengue virus infections is influenced by the time interval between infections and study year. PLoS Negl Trop Dis 7(8):e2357. PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mota J, Acosta M, Argotte R, Figueroa R, Méndez A, Ramos C (2005) Induction of protective antibodies against dengue virus by tetravalent DNA immunization of mice with domain III of the envelope protein. Vaccine 23(26):3469–3476PubMedCrossRefGoogle Scholar
  108. Muné M, Rodríguez R, Ramírez R, Soto Y, Sierra B, Roche RR, Marquez G, Garcia J, Guillén G, Guzmán M (2003) Carboxy-terminally truncated Dengue 4 virus envelope glycoprotein expressed in Pichia pastoris induced neutralizing antibodies and resistance to Dengue 4 virus challenge in mice. Arch Virol 148(11):2267–2273PubMedCrossRefGoogle Scholar
  109. Murrell S, Wu S-C, Butler M (2011) Review of dengue virus and the development of a vaccine. Biotechnol Adv 29(2):239–247PubMedCrossRefGoogle Scholar
  110. Nayak V, Dessau M, Kucera K, Anthony K, Ledizet M, Modis Y (2009) Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion. J Virol 83(9):4338–4344PubMedPubMedCentralCrossRefGoogle Scholar
  111. Nguyen N-L, Kim J-M, Park J-A, Park S-M, Jang Y-S, Yang M-S, Kim D-H (2013) Expression and purification of an immunogenic dengue virus epitope using a synthetic consensus sequence of envelope domain III and Saccharomyces cerevisiae. Protein Expr Purif 88(2):235–242PubMedCrossRefGoogle Scholar
  112. Oliphant T, Nybakken GE, Engle M, Xu Q, Nelson CA, Sukupolvi-Petty S, Marri A, Lachmi B-E, Olshevsky U, Fremont DH (2006) Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. J Virol 80(24):12149–12159PubMedPubMedCentralCrossRefGoogle Scholar
  113. Onlamoon N, Noisakran S, Hsiao H-M, Duncan A, Villinger F, Ansari AA, Perng GC (2010) Dengue virus-induced hemorrhage in a nonhuman primate model. Blood 115(9):1823–1834PubMedPubMedCentralCrossRefGoogle Scholar
  114. Pattnaik P, Babu JP, Verma SK, Tak V, Rao PL (2007) Bacterially expressed and refolded envelope protein (domain III) of dengue virus type-4 binds heparan sulfate. J Chromatogr 846(1):184–194Google Scholar
  115. Poddar A, Ramasamy V, Shukla R, Rajpoot RK, Arora U, Jain SK, Swaminathan S, Khanna N (2016) Virus-like particles derived from Pichia pastoris-expressed dengue virus type 1 glycoprotein elicit homotypic virus-neutralizing envelope domain III-directed antibodies. BMC Biotechnol 16(1):50PubMedPubMedCentralCrossRefGoogle Scholar
  116. Prinz WA, Åslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272(25):15661–15667PubMedCrossRefGoogle Scholar
  117. Rajamanonmani R, Nkenfou C, Clancy P, Yau YH, Shochat SG, Sukupolvi-Petty S, Schul W, Diamond MS, Vasudevan SG, Lescar J (2009) On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes. J Gen Virol 90(4):799–809PubMedPubMedCentralCrossRefGoogle Scholar
  118. Ramanathan MP, Kuo Y-C, Selling BH, Li Q, Sardesai NY, Kim JJ, Weiner DB (2009) Development of a novel DNA SynCon™ tetravalent dengue vaccine that elicits immune responses against four serotypes. Vaccine 27(46):6444–6453PubMedCrossRefGoogle Scholar
  119. Raviprakash K, Apt D, Brinkman A, Skinner C, Yang S, Dawes G, Ewing D, Wu S-J, Bass S, Punnonen J (2006) A chimeric tetravalent dengue DNA vaccine elicits neutralizing antibody to all four virus serotypes in rhesus macaques. Virology 353(1):166–173PubMedCrossRefGoogle Scholar
  120. Raviprakash K, Wang D, Ewing D, Holman DH, Block K, Woraratanadharm J, Chen L, Hayes C, Dong JY, Porter K (2008) A tetravalent dengue vaccine based on a complex adenovirus vector provides significant protection in rhesus monkeys against all four serotypes of dengue virus. J Virol 82(14):6927–6934PubMedPubMedCentralCrossRefGoogle Scholar
  121. Reddy PBJ, Pattnaik P, Tripathi NK, Srivastava A, Rao L (2012) Expression, purification and evaluation of diagnostic potential and immunogenicity of dengue virus type 3 domain III protein. Protein Pept Lett 19(5):509–519PubMedCrossRefGoogle Scholar
  122. Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375(6529):291–298PubMedCrossRefGoogle Scholar
  123. Rico-Hesse R (1990) Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 174(2):479–493PubMedCrossRefGoogle Scholar
  124. Rothman AL (2004) Dengue: defining protective versus pathologic immunity. J Clin Invest 113(7):946PubMedPubMedCentralCrossRefGoogle Scholar
  125. Rothman AL (2010) Cellular immunology of sequential dengue virus infection and its role in disease pathogenesis. Curr Top Microbiol Immunol 338:83–98. PubMedGoogle Scholar
  126. Sabchareon A, Lang J, Chanthavanich P, Yoksan S, Forrat R, Attanath P, Sirivichayakul C, Pengsaa K, Pojjaroen-Anant C, Chambonneau L (2004) Safety and immunogenicity of a three dose regimen of two tetravalent live-attenuated dengue vaccines in five-to twelve-year-old Thai children. Pediatr Infect Dis J 23(2):99–109PubMedCrossRefGoogle Scholar
  127. Sabin AB (1952) Research on dengue during World War II1. Am J Trop Med Hyg 1(1):30–50PubMedCrossRefGoogle Scholar
  128. Saejung W, Puttikhunt C, Prommool T, Sojikul P, Tanaka R, Fujiyama K, Malasit P, Seki T (2006) Enhancement of recombinant soluble dengue virus 2 envelope domain III protein production in Escherichia coli trxB and gor double mutant. J Biosci Bioeng 102(4):333–339PubMedCrossRefGoogle Scholar
  129. Saejung W, Fujiyama K, Takasaki T, Ito M, Hori K, Malasit P, Watanabe Y, Kurane I, Seki T (2007) Production of dengue 2 envelope domain III in plant using TMV-based vector system. Vaccine 25(36):6646–6654PubMedCrossRefGoogle Scholar
  130. Sánchez-Burgos G, Ramos-Castañeda J, Cedillo-Rivera R, Dumonteil E (2010) Immunogenicity of novel dengue virus epitopes identified by bioinformatic analysis. Virus Res 153(1):113–120PubMedCrossRefGoogle Scholar
  131. Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E (2006) Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol 80(20):10208–10217PubMedPubMedCentralCrossRefGoogle Scholar
  132. Sim AC, Lin W, Tan GK, Sim MS, Chow VT, Alonso S (2008) Induction of neutralizing antibodies against dengue virus type 2 upon mucosal administration of a recombinant Lactococcus lactis strain expressing envelope domain III antigen. Vaccine 26(9):1145–1154PubMedCrossRefGoogle Scholar
  133. Simmons M, Nelson WM, Wu S, Hayes CG (1998a) Evaluation of the protective efficacy of a recombinant dengue envelope B domain fusion protein against dengue 2 virus infection in mice. Am J Trop Med Hyg 58(5):655–662PubMedCrossRefGoogle Scholar
  134. Simmons M, Porter K, Escamilla J, Graham R, Watts D, Eckels K, Hayes C (1998b) Evaluation of recombinant dengue viral envelope B domain protein antigens for the detection of dengue complex-specific antibodies. Am J Trop Med Hyg 58(2):144–151PubMedCrossRefGoogle Scholar
  135. Simmons M, Murphy GS, Hayes CG (2001) Antibody responses of mice immunized with a tetravalent dengue recombinant protein subunit vaccine. Am J Trop Med Hyg 65(2):159–161PubMedCrossRefGoogle Scholar
  136. Spohn G, Jennings GT, Martina BE, Keller I, Beck M, Pumpens P, Osterhaus AD, Bachmann MF (2010) A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice. Virol J 7(1):146PubMedPubMedCentralCrossRefGoogle Scholar
  137. Srivastava AK, Putnak JR, Warren RL, Hoke CH (1995) Mice immunized with a dengue type 2 virus E and NS1 fusion protein made in Escherichia coli are protected against lethal dengue virus infection. Vaccine 13(13):1251–1258PubMedCrossRefGoogle Scholar
  138. Suzarte E, Marcos E, Gil L, Valdés I, Lazo L, Ramos Y, Pérez Y, Falcón V, Romero Y, Guzmán MG (2014) Generation and characterization of potential dengue vaccine candidates based on domain III of the envelope protein and the capsid protein of the four serotypes of dengue virus. Arch Virol 159(7):1629–1640PubMedCrossRefGoogle Scholar
  139. Suzarte E, Gil L, Valdés I, Marcos E, Lazo L, Izquierdo A, García A, López L, Álvarez M, Pérez Y (2015) A novel tetravalent formulation combining the four aggregated domain III-capsid proteins from dengue viruses induces a functional immune response in mice and monkeys. Int Immunol 27(8):367–379PubMedCrossRefGoogle Scholar
  140. Suzuki R, Winkelmann ER, Mason PW (2009) Construction and characterization of a single-cycle chimeric flavivirus vaccine candidate that protects mice against lethal challenge with dengue virus type 2. J Virol 83(4):1870–1880PubMedCrossRefGoogle Scholar
  141. Swaminathan S, Khanna N (2010) Dengue vaccine-current progress and challenges. Curr Sci 98:369–378Google Scholar
  142. Swaminathan S, Khanna N (2013) Experimental dengue vaccines. In: Giese M (ed) Molecular vaccines. Springer, ViennaGoogle Scholar
  143. Thullier P, Demangel C, Bedouelle H, Mégret F, Jouan A, Deubel V, Mazié J-C, Lafaye P (2001) Mapping of a dengue virus neutralizing epitope critical for the infectivity of all serotypes: insight into the neutralization mechanism. J Gen Virol 82(8):1885–1892PubMedCrossRefGoogle Scholar
  144. Tripathi NK, Babu JP, Shrivastva A, Parida M, Jana AM, Rao PL (2008) Production and characterization of recombinant dengue virus type 4 envelope domain III protein. J Biotechnol 134(3):278–286PubMedCrossRefGoogle Scholar
  145. Tripathi NK, Shrivastava A, Biswal KC, Rao P (2011) Recombinant dengue virus type 3 envelope domain III protein from Escherichia coli. Biotechnol J 6(5):604–608PubMedCrossRefGoogle Scholar
  146. Valdés I, Hermida L, Martín J, Menéndez T, Gil L, Lazo L, Castro J, Niebla O, López C, Bernardo L (2009) Immunological evaluation in nonhuman primates of formulations based on the chimeric protein P64k-domain III of dengue 2 and two components of Neisseria meningitidis. Vaccine 27(7):995–1001PubMedCrossRefGoogle Scholar
  147. Valdés I, Gil L, Romero Y, Castro J, Puente P, Lazo L, Marcos E, Guzmán MG, Guillén G, Hermida L (2011) The chimeric protein domain III-capsid of dengue virus serotype 2 (DEN-2) successfully boosts neutralizing antibodies generated in monkeys upon infection with DEN-2. Clin Vaccine Immunol 18(3):455–459PubMedPubMedCentralCrossRefGoogle Scholar
  148. Valdés I, Marcos E, Suzarte E, Pérez Y, Brown E, Lazo L, Cobas K, Yaugel M, Rodríguez Y, Gil L (2017) A dose-response study in mice of a tetravalent vaccine candidate composed of domain III-capsid proteins from dengue viruses. Arch Virol 162:2247–2256PubMedCrossRefGoogle Scholar
  149. van der Most RG, Murali-Krishna K, Ahmed R, Strauss JH (2000) Chimeric yellow fever/dengue virus as a candidate dengue vaccine: quantitation of the dengue virus-specific CD8 T-cell response. J Virol 74(17):8094–8101PubMedCentralCrossRefGoogle Scholar
  150. Vannice KS, Durbin A, Hombach J (2016) Status of vaccine research and development of vaccines for dengue. Vaccine 34(26):2934–2938PubMedCrossRefGoogle Scholar
  151. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA (2000) Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181(1):2–9PubMedCrossRefGoogle Scholar
  152. Versiani AF, Astigarraga RG, Rocha ES, Barboza APM, Kroon EG, Rachid MA, Souza DG, Ladeira LO, Barbosa-Stancioli EF, Jorio A (2017) Multi-walled carbon nanotubes functionalized with recombinant dengue virus 3 envelope proteins induce significant and specific immune responses in mice. J Nanobiotechnol 15(1):26CrossRefGoogle Scholar
  153. Vollmer J (2006) CpG motifs to modulate innate and adaptive immune responses. Int Rev Immunol 25(3-4):125–134PubMedCrossRefGoogle Scholar
  154. Wahala W, Kraus AA, Haymore LB, Accavitti-Loper MA, de Silva AM (2009) Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody. Virology 392(1):103–113PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wang S, He R, Anderson R (1999) PrM-and cell-binding domains of the dengue virus E protein. J Virol 73(3):2547–2551PubMedPubMedCentralGoogle Scholar
  156. White LJ, Parsons MM, Whitmore AC, Williams BM, De Silva A, Johnston RE (2007) An immunogenic and protective alphavirus replicon particle-based dengue vaccine overcomes maternal antibody interference in weanling mice. J Virol 81(19):10329–10339PubMedPubMedCentralCrossRefGoogle Scholar
  157. Williams KL, Wahala WM, Orozco S, De Silva AM, Harris E (2012) Antibodies targeting dengue virus envelope domain III are not required for serotype-specific protection or prevention of enhancement in vivo. Virology 429(1):12–20PubMedPubMedCentralCrossRefGoogle Scholar
  158. Wu K-P, Wu C-W, Tsao Y-P, Kuo T-W, Lou Y-C, Lin C-W, Wu S-C, Cheng J-W (2003a) Structural basis of a flavivirus recognized by its neutralizing antibody solution structure of the domain iii of the japanese encephalitis virus envelope protein. J Biol Chem 278(46):46007–46013PubMedCrossRefGoogle Scholar
  159. Wu S-C, Yu C-H, Lin C-W, Chu I-M (2003b) The domain III fragment of Japanese encephalitis virus envelope protein: mouse immunogenicity and liposome adjuvanticity. Vaccine 21(19):2516–2522PubMedCrossRefGoogle Scholar
  160. Wu S-F, Liao C-L, Lin Y-L, Yeh C-T, Chen L-K, Huang Y-F, Chou H-Y, Huang J-L, Shaio M-F, Sytwu H-K (2003c) Evaluation of protective efficacy and immune mechanisms of using a non-structural protein NS1 in DNA vaccine against dengue 2 virus in mice. Vaccine 21(25):3919–3929PubMedCrossRefGoogle Scholar
  161. Yang J, Zhang J, Chen W, Hu Z, Zhu J, Fang X, Yuan W, Li M, Hu X, Tan Y (2012) Eliciting cross-neutralizing antibodies in mice challenged with a dengue virus envelope domain III expressed in Escherichia coli. Can J Microbiol 58(4):369–380PubMedCrossRefGoogle Scholar
  162. Zellweger RM, Prestwood TR, Shresta S (2010) Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe 7(2):128–139PubMedPubMedCentralCrossRefGoogle Scholar
  163. Zhang Z-S, Yan Y-S, Weng Y-W, Huang H-L, Li S-Q, He S, Zhang J-M (2007) High-level expression of recombinant dengue virus type 2 envelope domain III protein and induction of neutralizing antibodies in BALB/C mice. J Virol Methods 143(2):125–131PubMedCrossRefGoogle Scholar
  164. Zhang D, Xia Q, Wu J, Liu D, Wang X, Niu Z (2011) Construction and immunogenicity of DNA vaccines encoding fusion protein of murine complement C3d-p28 and GP5 gene of porcine reproductive and respiratory syndrome virus. Vaccine 29(4):629–635PubMedCrossRefGoogle Scholar
  165. Zheng Q, Fan D, Gao N, Chen H, Wang J, Ming Y, Li J, An J (2011) Evaluation of a DNA vaccine candidate expressing prM-E-NS1 antigens of dengue virus serotype 1 with or without granulocyte-macrophage colony-stimulating factor (GM-CSF) in immunogenicity and protection. Vaccine 29(4):763–771PubMedCrossRefGoogle Scholar
  166. Zheng X, Chen H, Wang R, Fan D, Feng K, Gao N, An J (2017) Effective protection induced by a monovalent DNA vaccine against dengue virus (DV) serotype 1 and a bivalent DNA vaccine against DV1 and DV2 in mice. Front Cell Infect Microbiol 7:175. PubMedPubMedCentralCrossRefGoogle Scholar
  167. Zlatkovic J, Stiasny K, Heinz FX (2011) Immunodominance and functional activities of antibody responses to inactivated West Nile virus and recombinant subunit vaccines in mice. J Virol 85(5):1994–2003PubMedCrossRefGoogle Scholar
  168. Zulueta A, Martín J, Hermida L, Alvarez M, Valdés I, Prado I, Chinea G, Rosario D, Guillén G, Guzmán MG (2006) Amino acid changes in the recombinant dengue 3 envelope domain III determine its antigenicity and immunogenicity in mice. Virus Res 121(1):65–73PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences BranchIslamic Azad UniversityTehranIran
  2. 2.Blood Transfusion Research CenterHigh Institute for Research and Education in Transfusion MedicineTehranIran
  3. 3.Anatomical Sciences Research CenterKashan University of Medical SciencesKashanIran
  4. 4.Department of Cell and Molecular Biology, Faculty of ScienceSemnan UniversitySemnanIran
  5. 5.Department of Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations