Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 6, pp 2509–2523 | Cite as

Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms

  • Marianna Dourou
  • Dimitra Aggeli
  • Seraphim Papanikolaou
  • George Aggelis
Mini-Review

Abstract

Oleaginous microorganisms are able to convert numerous agro-industrial and municipal wastes into storage lipids (single cell oil (SCO)) and are therefore considered as potential biofuel producers. While from an environmental and technological point of view the idea to convert waste materials into fuels is very attractive, the production cost of SCO is not currently competitive to that of conventional oils due to the low productivity of oleaginous microorganisms in combination with the high fermentation cost. Current strategies used to optimize the lipid-accumulating capacity of oleaginous microorganisms include the overexpression of genes encoding for key enzymes implicated in fatty acid and triacylglycerol synthesis, such as ATP-dependent citrate lyase, acetyl-CoA carboxylase, malic enzyme, proteins of the fatty acid synthase complex, glycerol 3-phosphate dehydrogenase and various acyltransferases, and/or the inactivation of genes encoding for enzymes implicated in storage lipid catabolism, such as lipases and acyl-CoA oxidases. Furthermore, blocking, even partially, pathways competitive to lipid biosynthesis (e.g., those involved in the accumulation of storage polysaccharide or organic acid and polyol excretion) can also increase lipid-accumulating ability in oleaginous microorganisms. Methodologies, such as adaptive laboratory evolution, can be included in existing workflows for the generation of strains with improved lipid accumulation capacity. In our opinion, efforts should be focused in the construction of strains with high carbon uptake rates and a reprogrammed coordination of the individual parts of the oleaginous machinery that maximizes carbon flux towards lipogenesis.

Keywords

Regulating lipid metabolism Lipid biosynthesis Lipid degradation Competitive pathways Yarrowia lipolytica 

Notes

Funding information

We acknowledge support of this work by the project “INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management” (MIS 5002495) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

References

  1. Aggelis G, Komaitis M, Papanikolaou S, Papadopoulos G, Papadopoulos G (1995) A mathematical model for the study of lipid accumulation in oleaginous microorganisms. I. Lipid accumulation during growth of Mucor circinelloides CBS 172-27 on a vegetable oil. Grasas Aceites 46:169–1873CrossRefGoogle Scholar
  2. Aguilar LR, Pardo JP, Lomelí MM, Bocardo OIL, Juárez Oropeza MA, Guerra Sánchez G (2017) Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation. Arch Microbiol 199:1195–1209PubMedCrossRefGoogle Scholar
  3. Almario MP, Reyes LH, Kao KC (2013) Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng 110:2616–2623PubMedCrossRefGoogle Scholar
  4. Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376PubMedCrossRefGoogle Scholar
  5. Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386PubMedCrossRefGoogle Scholar
  6. Alvarez HM, Kalscheuer R, Steinbüchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223PubMedCrossRefGoogle Scholar
  7. André A, Chatzifragkou A, Diamantopoulou P, Sarris D, Philippoussis A, Galiotou-Panayotou M, Komaitis M, Papanikolaou S (2009) Biotechnological conversions of bio-dieselderived crude glycerol by Yarrowia lipolytica strains. Eng Life Sci 9:468–478CrossRefGoogle Scholar
  8. André A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: Production of biomass, single cell oil and oxalic acid. Ind Crop Prod 31:407–416CrossRefGoogle Scholar
  9. Arous F, Mechichi T, Nasri M, Aggelis G (2016) Fatty acid biosynthesis during the life cycle of Debaryomyces etchellsii. Microbiology (United Kingdom) 162:1080–1090Google Scholar
  10. Arous F, Atitallah IB, Nasri M, Mechichi T (2017a) A sustainable use of low-cost raw substrates for biodiesel production by the oleaginous yeast Wickerhamomyces anomalus. 3 Biotech 7:268PubMedCrossRefGoogle Scholar
  11. Arous F, Azabou S, Triantaphyllidou IE, Aggelis G, Jaouani A, Nasri M, Mechichi T (2017b) Newly isolated yeasts from Tunisian microhabitats: Lipid accumulation and fatty acid composition. Eng Life Sci 17:226–236CrossRefGoogle Scholar
  12. Barrero AF, Enrique Oltra J, Robinson J, Burke PV, Jimenez D, Oliver E (2002) Sterols in erg mutants of Phycomyces: Metabolic pathways and physiological effects. Steroids 67:403–409PubMedCrossRefGoogle Scholar
  13. Bellou S, Aggelis G (2012) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 164:318–329PubMedCrossRefGoogle Scholar
  14. Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014a) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32:1476–1493PubMedCrossRefGoogle Scholar
  15. Bellou S, Makri A, Sarris D, Michos K, Rentoumi P, Celik A, Papanikolaou S, Aggelis G (2014b) The olive mill wastewater as substrate for single cell oil production by Zygomycetes. J Biotechnol 170:50–59PubMedCrossRefGoogle Scholar
  16. Bellou S, Makri A, Triantaphyllidou IE, Papanikolaou S, Aggelis G (2014c) Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiology 160:807–817PubMedCrossRefGoogle Scholar
  17. Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G (2016a) Microbial oils as food additives: Recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35PubMedCrossRefGoogle Scholar
  18. Bellou S, Triantaphyllidou IE, Mizerakis P, Aggelis G (2016b) High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. J Biotechnol 234:116–126PubMedCrossRefGoogle Scholar
  19. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74:7779–7789PubMedPubMedCentralCrossRefGoogle Scholar
  20. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387PubMedCrossRefGoogle Scholar
  21. Beopoulos A, Nicaud JM, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90:1193–1206PubMedCrossRefGoogle Scholar
  22. Besada-Lombana PB, Fernandez-Moya R, Fenster J, Da Silva NA (2017) Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid. Biotechnol Bioeng 114:1531–1538PubMedCrossRefGoogle Scholar
  23. Bhutada G, Kavšček M, Ledesma-Amaro R, Thomas S, Rechberger GN, Nicaud JM, Natter K (2017) Sugar versus fat: Elimination of glycogen storage improves lipid accumulation in Yarrowia lipolytica. FEMS Yeast Res:1–10Google Scholar
  24. Blatti JL, Michaud J, Burkart MD (2013) Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr Opin Chem Biol 17:496–505PubMedCrossRefGoogle Scholar
  25. Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:1–10CrossRefGoogle Scholar
  26. Bommareddy RR, Sabra W, Maheshwari G, Zeng AP (2015) Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates. Microb Cell Factories 14:36CrossRefGoogle Scholar
  27. Carman GM, Han GS (2009) Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J Biol Chem 284:2593–2597PubMedPubMedCentralCrossRefGoogle Scholar
  28. Čertík M, Adamechová Z, Guothová L (2013) Simultaneous enrichment of cereals with polyunsaturated fatty acids and pigments by fungal solid state fermentations. J Biotechnol 168:130–134PubMedCrossRefGoogle Scholar
  29. Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097–1108CrossRefGoogle Scholar
  30. Chou HH, Chiu HC, Delaney NF, Segre D, Marx CJ (2011) Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332:1190–1192PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chuang LT, Chen DC, Nicaud JM, Madzak C, Chen YH, Huang YS (2010) Co-expression of heterologous desaturase genes in Yarrowia lipolytica. New Biotechnol 27:277–282CrossRefGoogle Scholar
  32. Cronan JE, Thomas J (2009) Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 459:395–433PubMedPubMedCentralCrossRefGoogle Scholar
  33. Damude HG, Gillies PJ, Macool DJ, Picataggio SK, Ragghianti JJ, Seip JE, Xue Z, Yadav NS, Zhang H, Zhu QQ (2014) Docosahexaenoic acid producing strains of Yarrowia lipolytica. US Patent No 8,685,682Google Scholar
  34. Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531CrossRefGoogle Scholar
  35. de Paula FC, de Paula CBC, Gomez JGC, Steinbüchel A, Contiero J (2017) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from biodiesel by-product and propionic acid by mutant strains of Pandoraea sp. Biotechnol Prog 33:1077–1084PubMedCrossRefGoogle Scholar
  36. Deatherage DE, Kepner JL, Bennett AF, Lenski RE, Barrick JE (2017) Specificity of genome evolution in experimental populations of Escherichia coli evolved at different temperatures. Proc Natl Acad Sci 114:1904–1912CrossRefGoogle Scholar
  37. Diamantopoulou P, Papanikolaou S, Katsarou E, Komaitis M, Aggelis G, Philippoussis A (2012) Mushroom polysaccharides and lipids synthesized in liquid agitated and static cultures. Part II: Study of Volvariella volvacea. Appl Biochem Biotechnol 167:1890–1906PubMedCrossRefGoogle Scholar
  38. Diamantopoulou P, Papanikolaou S, Komaitis M, Aggelis G, Philippoussis A (2014) Patterns of major metabolites biosynthesis by different mushroom fungi grown on glucose-based submerged cultures. Bioprocess Biosyst Eng 37:1385–1400PubMedCrossRefGoogle Scholar
  39. Diamantopoulou P, Papanikolaou S, Aggelis G, Philippoussis A (2016) Adaptation of Volvariella volvacea metabolism in high carbon to nitrogen ratio media. Food Chem 196:272–280PubMedCrossRefGoogle Scholar
  40. Dobrowolski A, Mituła P, Rymowicz W, Mirończuk AM (2016) Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresour Technol 207:237–243PubMedCrossRefGoogle Scholar
  41. Dourou M, Kancelista A, Juszczyk P, Sarris D, Bellou S, Triantaphyllidou I, Rywinska A, Papanikolaou S, Aggelis G (2016) Bioconversion of olive mill wastewater into high-added value products. J Clean Prod 139:957–969CrossRefGoogle Scholar
  42. Dourou M, Mizerakis P, Papanikolaou S, Aggelis G (2017) Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina. Appl Microbiol Biotechnol 101:7213–7226PubMedCrossRefGoogle Scholar
  43. Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution—Principles and applications for biotechnology. Microb Cell Factories 12:64CrossRefGoogle Scholar
  44. Driver T, Trivedi DK, McIntosh OA, Dean AP, Goodacre R, Pittman JK (2017) Two glycerol-3-phosphate dehydrogenases from Chlamydomonas have distinct roles in lipid metabolism. Plant Physiol 174:2083–2097PubMedCrossRefGoogle Scholar
  45. Dulermo T, Nicaud JM (2011) Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 13:482–491PubMedCrossRefGoogle Scholar
  46. Dulermo T, Lazar Z, Dulermo R, Rakicka M (2015) Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis. BBA - Mol Cell Biol Lipids 1851:1107–1117CrossRefGoogle Scholar
  47. Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57–8:223–231CrossRefGoogle Scholar
  48. Easterling ER, French WT, Hernandez R, Licha M (2009) The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour Technol 100:356–361PubMedCrossRefGoogle Scholar
  49. Economou CN, Makri A, Aggelis G, Pavlou S, Vayenas DV (2010) Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour Technol 101:1385–1388PubMedCrossRefGoogle Scholar
  50. Economou CN, Aggelis G, Pavlou S, Vayenas DV (2011) Single cell oil production from rice hulls hydrolysate. Bioresour Technol 102:9737–9742PubMedCrossRefGoogle Scholar
  51. Fakas S (2017) Lipid biosynthesis in yeasts: A comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica. Eng Life Sci 17:292–302CrossRefGoogle Scholar
  52. Fakas S, Papanikolaou S, Galiotou-Panayotou M, Komaitis M, Aggelis G (2006) Lipids of Cunninghamella echinulata with emphasis to γ-linolenic acid distribution among lipid classes. Appl Microbiol Biotechnol 73:676–683PubMedCrossRefGoogle Scholar
  53. Fakas S, Papanikolaou S, Galiotou-Panayotou M, Komaitis M, Aggelis G (2008) Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J Appl Microbiol 105:1062–1070PubMedCrossRefGoogle Scholar
  54. Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G (2009) Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour Technol 100:6118–6120PubMedCrossRefGoogle Scholar
  55. Fillet S, Ronchel C, Callejo C, Fajardo M, Moralejo H, Adrio JL (2017) Engineering Rhodosporidium toruloides for the production of very long-chain monounsaturated fatty acid-rich oils. Appl Microbiol Biotechnol 101:7271–7280PubMedCrossRefGoogle Scholar
  56. Friedlander J, Tsakraklides V, Kamineni A, Greenhagen EH, Consiglio AL, Macewen K, Crabtree DV, Afshar J, Nugent RL, Hamilton MA, Shaw AJ, South CR, Stephanopoulos G, Brevnova EE (2016) Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnol Biofuels 9:77PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gajdoš P, Nicaud JM, Rossignol T, Čertik M (2015) Single cell oil production on molasses by Yarrowia lipolytica strains overexpressing DGA2 in multicopy. Appl Microbiol Biotechnol 99:8065–8074PubMedCrossRefGoogle Scholar
  58. Gajdoš P, Ledesma-Amaro R, Nicaud JM, Čertík M, Rossignol T (2016) Overexpression of diacylglycerol acyltransferase in Yarrowia lipolytica affects lipid body size, number and distribution. FEMS Yeast Res 16:1–8CrossRefGoogle Scholar
  59. Gajdoš P, Nicaud JM, Čertík M (2017) Glycerol conversion into a single cell oil by engineered Yarrowia lipolytica. Eng Life Sci 17:325–332CrossRefGoogle Scholar
  60. Gardeli C, Athenaki M, Xenopoulos E, Mallouchos A, Koutinas AA, Aggelis G, Papanikolaou S (2017) Lipid production and characterization by Mortierella (Umbelopsis) isabellina cultivated on lignocellulosic sugars. J Appl Microbiol 123:1461–1477PubMedCrossRefGoogle Scholar
  61. Gema H, Kavadia A, Dimou D, Tsagou V, Komaitis M, Aggelis G (2002) Production of γ-linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peel. Appl Microbiol Biotechnol 58:303–307PubMedCrossRefGoogle Scholar
  62. Gerstein AC, Lo DS, Otto SP (2012) Parallel genetic changes and nonparallel gene-environment interactions characterize the evolution of drug resistance in yeast. Genetics 192:241–252PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gonçalves FAG, Colen G, Takahashi JA (2014) Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci World J 2014:14.  https://doi.org/10.1155/2014/476207
  64. Gong Z, Nielsen J, Zhou YJ (2017) Engineering robustness of microbial cell factories. Biotechnol J 12:1700014CrossRefGoogle Scholar
  65. Greer MS, Truksa M, Deng W, Lung SC, Chen G, Weselake RJ (2015) Engineering increased triacylglycerol accumulation in Saccharomyces cerevisiae using a modified type 1 plant diacylglycerol acyltransferase. Appl Microbiol Biotechnol 99:2243–2253PubMedCrossRefGoogle Scholar
  66. Hamilton ML, Haslam RP, Napier JA, Sayanova O (2014) Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 22:3–9PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hardman D, McFalls D, Fakas S (2017) Characterization of phosphatidic acid phosphatase activity in the oleaginous yeast Yarrowia lipolytica and its role in lipid biosynthesis. Yeast 34:83–91Google Scholar
  68. Horinouchi T, Sakai A, Kotani H, Tanabe K, Furusawa C (2017) Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies. J Biotechnol 255:47–56PubMedCrossRefGoogle Scholar
  69. Ibrahim MHA, Steinbüchel A (2009) Poly(3-hydroxybutyrate) production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl Environ Microbiol 75:6222–6231PubMedPubMedCentralCrossRefGoogle Scholar
  70. Janßen HJ, Steinbüchel A (2014) Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 7:7PubMedPubMedCentralCrossRefGoogle Scholar
  71. Janßen H, Ibrahim MHA, Bröker D, Steinbüchel A (2013) Optimization of macroelement concentrations, pH and osmolarity for triacylglycerol accumulation in Rhodococcus opacus strain PD630. AMB Express 3:38PubMedPubMedCentralCrossRefGoogle Scholar
  72. Jensen-Pergakes K, Guo Z, Giattina M, Sturley SL, Bard M (2001) Transcriptional regulation of the two sterol esterification genes in the yeast Saccharomyces cerevisiae. J Bacteriol 183:4950–4957PubMedPubMedCentralCrossRefGoogle Scholar
  73. Jin T, Chen Y, Jarboe LR (2016) Chapter 10-Evolutionary methods for improving the production of biorenewable fuels and chemicals. In: Eckert CA, Trinh CT (eds) Biotechnology for Biofuel Production and Optimization. Amsterdam, pp 265–290Google Scholar
  74. Kacar B, Ge X, Sanyal S, Gaucher EA (2017) Experimental evolution of Escherichia coli harboring an ancient translation protein. J Mol Evol 84:69–84PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kalscheuer R, Sto T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiol (United Kingdom) 152:2529–2536Google Scholar
  76. Kamisaka Y, Kimura K, Uemura H, Yamaoka M (2013) Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Appl Microbiol Biotechnol 97:7345–7355PubMedCrossRefGoogle Scholar
  77. Karamerou EE, Theodoropoulos C, Webb C (2017) Evaluating feeding strategies for microbial oil production from glycerol by Rhodotorula glutinis. Eng Life Sci 17:314–324CrossRefGoogle Scholar
  78. Kavscek M, Bhutada G, Madl T, Natter K (2015) Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. BMC Syst Biol 9:72PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kendrick A, Ratledge C (1992) Desaturation of polyunsaturated fatty acids in Mucor circinelloides and the involvement of a novel membrane-bound malic enzyme. Eur J Biochem 209:667–673PubMedCrossRefGoogle Scholar
  80. Kolouchová I, Maťátková O, Sigler K, Masák J, Řezanka T (2016) Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation. Folia Microbiol (Praha) 61:431–438CrossRefGoogle Scholar
  81. Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116:566–577CrossRefGoogle Scholar
  82. Krienitz L, Wirth M (2006) The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica 36:204–210CrossRefGoogle Scholar
  83. Kryazhimskiy S, Rice DP, Jerison ER, Desai MM (2014) Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344:1519–1522PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kvitek DJ, Sherlock G (2013) Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment. PLoS Genet 9:e1003972PubMedPubMedCentralCrossRefGoogle Scholar
  85. La Russa M, Bogen C, Uhmeyer A, Doebbe A, Filippone E, Kruse O, Mussgnug JH (2012) Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J Biotechnol 162:13–20PubMedCrossRefGoogle Scholar
  86. Lazar Z, Dulermo T, Neuvéglise C, Coq AC, Nicaud JM (2014) Hexokinase-a limiting factor in lipid production from fructose in Yarrowia lipolytica. Metab Eng 26:89–99PubMedCrossRefGoogle Scholar
  87. Ledesma-Amaro R, Dulermo R, Niehus X, Nicaud JM (2016) Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng 38:38–46PubMedCrossRefGoogle Scholar
  88. Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J (2012) Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels 5:18PubMedPubMedCentralCrossRefGoogle Scholar
  89. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756PubMedCrossRefGoogle Scholar
  90. Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12:387–391PubMedCrossRefGoogle Scholar
  91. Li M, Ou X, Yang X, Guo D, Qian X, Xing L, Li M (2011) Isolation of a novel C18-D9 polyunsaturated fatty acid specific elongase gene from DHA-producing Isochrysis galbana H29 and its use for the reconstitution of the alternative D8 pathway in Saccharomyces cerevisiae. Biotechnol Lett 33:1823–1830PubMedCrossRefGoogle Scholar
  92. Li Z, Sun H, Mo X, Li X, Xu B, Tian P (2013) Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis. Appl Microbiol Biotechnol 97:4927–4936PubMedCrossRefGoogle Scholar
  93. Liu X, Sheng J, Curtiss R 3rd (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci USA 108:6899–6904Google Scholar
  94. Lynch M, Ackerman MS, Gout J-F, Long H, Sung W, Thomas WK, Foster PL (2016) Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 17:704–714PubMedCrossRefGoogle Scholar
  95. Makri A, Fakas S, Aggelis G (2010) Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour Technol 101:2351–2358PubMedCrossRefGoogle Scholar
  96. Matsakas L, Sterioti A, Rova U, Christakopoulos P (2014) Use of dried sweet sorghum for the efficient production of lipids by the yeast Lipomyces starkeyi CBS 1807. Ind Crop Prod 62:367–372CrossRefGoogle Scholar
  97. Mejanelle L, Lopez JF, Gunde-Cimerman N, Grimalt JO (2000) Sterols of melanized fungi from hypersaline environments. Org Geochem 31:1031–1040CrossRefGoogle Scholar
  98. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5CrossRefGoogle Scholar
  99. Meng Q, Zhang T, Wei W, Mu W, Miao M (2017) Production of mannitol from a high concentration of glucose by Candida parapsilosis SK26.001. Appl Biochem Biotechnol 181:391–406PubMedCrossRefGoogle Scholar
  100. Mercer EI (1984) The biosynthesis of ergosterol. Pestic Sci 15:133–155CrossRefGoogle Scholar
  101. Mlíčková K, Luo Y, D’Andrea S, Peč P, Chardot T, Nicaud JM (2004) Acyl-CoA oxidase, a key step for lipid accumulation in the yeast Yarrowia lipolytica. J Mol Catal B Enzym 28:81–85CrossRefGoogle Scholar
  102. Morgunov IG, Kamzolova SV (2015) Physiologo-biochemical characteristics of citrate-producing yeast Yarrowia lipolytica grown on glycerol-containing waste of biodiesel industry. Appl Microbiol Biotechnol 99:6443–6450PubMedCrossRefGoogle Scholar
  103. Moustogianni A, Bellou S, Triantaphyllidou IE, Aggelis G (2015) Feasibility of raw glycerol conversion into single cell oil by zygomycetes under non-aseptic conditions. Biotechnol Bioeng 112:827–831PubMedCrossRefGoogle Scholar
  104. Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11:4662–4697PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nahum JR, Godfrey-Smith P, Harding BN, Marcus JH, Carlson-Stevermer J, Kerr B (2015) A tortoise–hare pattern seen in adapting structured and unstructured populations suggests a rugged fitness landscape in bacteria. Proc Natl Acad Sci 112:7530–7535PubMedPubMedCentralCrossRefGoogle Scholar
  106. Nawabi P, Bauer S, Kyrpides N, Lykidis A (2011) Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase. Appl Environ Microbiol 77:8052–8061PubMedPubMedCentralCrossRefGoogle Scholar
  107. Nicol RW, Marchand K, Lubitz WD (2012) Bioconversion of crude glycerol by fungi. Appl Microbiol Biotechnol 93:1865–1875PubMedCrossRefGoogle Scholar
  108. Niu YF, Zhang MH, Li DW, Yang WD, Liu JS, Bai WB, Li HY (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11:4558–4569PubMedPubMedCentralCrossRefGoogle Scholar
  109. Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single stage continuous culture. Bioresour Technol 82:43–49PubMedCrossRefGoogle Scholar
  110. Papanikolaou S, Aggelis G (2003) Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial aats. Curr Microbiol 46:398–402PubMedCrossRefGoogle Scholar
  111. Papanikolaou S, Aggelis G (2009) Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol 21:83–87CrossRefGoogle Scholar
  112. Papanikolaou S, Aggelis G (2010) Yarrowia lipolytica: A model microorganism used for the production of tailor-made lipids. Eur J Lipid Sci Technol 112:639–654CrossRefGoogle Scholar
  113. Papanikolaou S, Aggelis G (2011a) Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051CrossRefGoogle Scholar
  114. Papanikolaou S, Aggelis G (2011b) Lipids of oleaginous yeasts. Part II: Technology and potential applications. Eur J Lipid Sci Technol 113:1052–1073CrossRefGoogle Scholar
  115. Papanikolaou S, Komaitis M, Aggelis G (2004a) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95:287–291PubMedCrossRefGoogle Scholar
  116. Papanikolaou S, Sarantou S, Komaitis M, Aggelis G (2004b) Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. J Appl Microbiol 97:867–875PubMedCrossRefGoogle Scholar
  117. Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G (2008) Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresour Technol 99:2419–2428PubMedCrossRefGoogle Scholar
  118. Papanikolaou S, Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Nicaud JM, Aggelis G (2009) Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur J Lipid Sci Technol 111:1221–1232CrossRefGoogle Scholar
  119. Papanikolaou S, Kampisopoulou E, Blanchard F, Rondags E, Gardeli C, Koutinas AA, Chevalot I, Aggelis G (2017a) Production of secondary metabolites through glycerol fermentation under carbon-excess conditions by the yeasts Yarrowia lipolytica and Rhodosporidium toruloides. Eur J Lipid Sci Technol 119:n/a, 1600507.  https://doi.org/10.1002/ejlt.201600507
  120. Papanikolaou S, Rontou M, Belka A, Athenaki M, Gardeli C, Mallouchos A, Kalantzi O, Koutinas AA, Kookos IK, Zeng AP, Aggelis G (2017b) Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Eng Life Sci 17:262–281CrossRefGoogle Scholar
  121. Park Y, Han GS, Mileykovskaya E, Garrett TA, Carman GM (2015) Altered lipid synthesis by lack of yeast Pah1 phosphatidate phosphatase reduces chronological life span. J Biol Chem 290:25382–25394PubMedPubMedCentralCrossRefGoogle Scholar
  122. Park YC, Oh EJ, Jo JH, Jin YS, Seo JH (2016) Recent advances in biological production of sugar alcohols. Curr Opin Biotechnol 37:105–113PubMedCrossRefGoogle Scholar
  123. Pascual F, Carman GM (2013) Phosphatidate phosphatase, a key regulator of lipid homeostasis. Biochim Biophys Acta - Mol Cell Biol Lipids 1831:514–522CrossRefGoogle Scholar
  124. Patterson GW (1969) Sterols of Chlorella. III. Species containing ergosterol. Comp Biochem Physiol 31:391–394CrossRefGoogle Scholar
  125. Peng KT, Zheng CN, Xue J, Chen XY, Yang WD, Liu JS, Bai W, Li HY (2014) Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. J Agric Food Chem 62:8773–8776PubMedCrossRefGoogle Scholar
  126. Poblete-Castro I, Binger D, Oehlert R, Rohde M (2014) Comparison of mcl-poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: Citrate accumulates at high titer under PHA-producing conditions. BMC Biotechnol 14:962PubMedPubMedCentralCrossRefGoogle Scholar
  127. Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae – A review. J Algal Biomass Util 3:89–100Google Scholar
  128. Qin L, Liu L, Zeng AP, Wei D (2017) From low-cost substrates to single cell oils synthesized by oleaginous yeasts. Bioresour Technol 245:1507–1519PubMedCrossRefGoogle Scholar
  129. Rakicka M, Lazar Z, Rywińska A, Rymowicz W (2016) Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase. Chem Pap 70:1452–1459CrossRefGoogle Scholar
  130. Rakicka M, Rywińska A, Lazar Z, Rymowicz W (2017) Two-stage continuous culture – Technology boosting erythritol production. J Clean Prod 168:420–427CrossRefGoogle Scholar
  131. Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259CrossRefGoogle Scholar
  132. Ratledge C (2013) Microbial oils: An introductory overview of current status and future prospects. Ocl 20:D602CrossRefGoogle Scholar
  133. Ratledge C (2014) The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: A reappraisal and unsolved problems. Biotechnol Lett 36:1557–1568PubMedCrossRefGoogle Scholar
  134. Ratledge C, Cohen Z (2008) Microbial and algal oils: Do they have a future for biodiesel or as commodity oils? Lipid Technol 20:155–160CrossRefGoogle Scholar
  135. Ratledge C, Wilkinson SG (1988) Microbial lipids, vol 1. Academic Press, CambridgeGoogle Scholar
  136. Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51PubMedCrossRefGoogle Scholar
  137. Rodríguez-Frómeta RA, Gutiérrez A, Torres-Martínez S, Garre V (2013) Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 97:3063–3072PubMedCrossRefGoogle Scholar
  138. Röttig A, Hauschild P, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A (2016) Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil. J Biotechnol 225:48–56PubMedCrossRefGoogle Scholar
  139. Ruan Z, Zanotti M, Zhong Y, Liao W, Ducey C, Liu Y (2013) Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation. Biotechnol Bioeng 110:1039–1049PubMedCrossRefGoogle Scholar
  140. Ruan Z, Zanotti M, Archer S, Liao W, Liu Y (2014) Oleaginous fungal lipid fermentation on combined acid- and alkali-pretreated corn stover hydrolysate for advanced biofuel production. Bioresour Technol 163:12–17PubMedCrossRefGoogle Scholar
  141. Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–113PubMedCrossRefGoogle Scholar
  142. Safdar W, Shamoon M, Zan X, Haider J, Sharif HR, Shoaib M, Song Y (2017) Growth kinetics, fatty acid composition and metabolic activity changes of Crypthecodinium cohnii under different nitrogen source and concentration. AMB Express 7:85PubMedPubMedCentralCrossRefGoogle Scholar
  143. Sagnak R, Cochot S, Molina-Jouve C, Nicaud JM, Guillouet SE (2018) Modulation of the glycerol phosphate availability led to concomitant reduction in the citric acid excretion and increase in lipid content and yield in Yarrowia lipolytica. J Biotechnol 265:40–45PubMedCrossRefGoogle Scholar
  144. Sandberg TE, Lloyd CJ, Palsson BO, Feist AM (2017) Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies. Appl Environ Microbiol 83:e00410–e00417PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sarris D, Galiotou-Panayotou M, Koutinas AA, Komaitis M, Papanikolaou S (2011) Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media. J Chem Technol Biotechnol 86:1439–1448CrossRefGoogle Scholar
  146. Sarris D, Stoforos NG, Mallouchos A, Kookos IK, Koutinas AA, Aggelis G, Papanikolaou S (2017) Production of added-value metabolites by Yarrowia lipolytica growing in olive mill wastewater-based media under aseptic and non-aseptic conditions. Eng Life Sci 17:695–709CrossRefGoogle Scholar
  147. Seip J, Jackson R, He H, Zhu Q, Hong SP (2013) Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica. Appl Environ Microbiol 79:7360–7370PubMedPubMedCentralCrossRefGoogle Scholar
  148. Shen H, Zhang X, Gong Z, Wang Y, Yu X, Yang X, Zhao ZK (2017) Compositional profiles of Rhodosporidium toruloides cells under nutrient limitation. Appl Microbiol Biotechnol 101:3801–3809PubMedCrossRefGoogle Scholar
  149. Sherkhanov S, Korman TP, Clarke SG, Bowie JU (2016) Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme. Nat Publ Group 6:24239Google Scholar
  150. Shi S, Chen Y, Siewers V, Nielsen J (2014) Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio 5:1–8CrossRefGoogle Scholar
  151. Sorger D, Athenstaedt K, Hrastnik C, Daum G (2004) A yeast strain lacking lipid particles bears a defect in ergosterol formation. J Biol Chem 279:31190–31196PubMedCrossRefGoogle Scholar
  152. Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM (2015) NADPH-generating systems in bacteria and archaea. Front Microbiol 6:1–27CrossRefGoogle Scholar
  153. Spolaore P, Joannis-Cassan C, Duran E, Isambert A, De Génie L, Paris EC (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96PubMedCrossRefGoogle Scholar
  154. Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byron D (ed) Biomaterials, Palgrave Macmillan, London, pp 123–213Google Scholar
  155. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228CrossRefGoogle Scholar
  156. Stodola FH, Deinema MH, Spencer JF (1967) Extracellular lipids of yeasts. Bacteriol Rev 31:194–213PubMedPubMedCentralGoogle Scholar
  157. Sun A, Davis R, Starbuck M, Ben-amotz A, Pate R, Pienkos PT (2011) Comparative cost analysis of algal oil production for biofuels. Energy 36:5169–5179CrossRefGoogle Scholar
  158. Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9PubMedCrossRefGoogle Scholar
  159. Tamano K, Bruno KS, Karagiosis SA, Culley DE, Deng S, Collett JR, Umemura M, Koike H, Baker SE, Machida M (2013) Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol Biotechnol 97:269–281PubMedCrossRefGoogle Scholar
  160. Tang W, Zhang S, Tan H, Zhao ZK (2010) Molecular cloning and characterization of a malic enzyme gene from the oleaginous yeast Lipomyces starkeyi. Mol Biotechnol 45:121–128PubMedCrossRefGoogle Scholar
  161. Tavares S, Grotkjær T, Obsen T, Haslam RP, Napier JA, Gunnarsson N (2011) Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel D5-desaturase from Paramecium tetraurelia. Appl Environ Microbiol 77:1854–1861PubMedCrossRefGoogle Scholar
  162. Tchakouteu SS, Chatzifragkou A, Kalantzi O, Koutinas AA, Aggelis G, Papanikolaou S (2015a) Oleaginous yeast Cryptococcus curvatus exhibits interplay between biosynthesis of intracellular sugars and lipids. Eur J Lipid Sci Technol 117:657–672CrossRefGoogle Scholar
  163. Tchakouteu SS, Kalantzi O, Gardeli C, Koutinas AA, Aggelis G, Papanikolaou S (2015b) Lipid production by yeasts growing on biodiesel-derived crude glycerol: Strain selection and impact of substrate concentration on the fermentation efficiency. J Appl Microbiol 118:911–927PubMedCrossRefGoogle Scholar
  164. Tomaszewska L, Rywińska A, Gladkowski W (2012) Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J Ind Microbiol Biotechnol 39:1333–1343PubMedPubMedCentralCrossRefGoogle Scholar
  165. Tomaszewska-Hetman L, Rywińska A (2016) Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: Effect of osmotic pressure. Chem Pap 70:272–283CrossRefGoogle Scholar
  166. Tsakona S, Kopsahelis N, Chatzifragkou A, Papanikolaou S, Kookos IK, Koutinas AA (2014) Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi. J Biotechnol 189:36–45PubMedCrossRefGoogle Scholar
  167. Tsakona S, Skiadaresis AG, Kopsahelis N, Chatzifragkou A, Papanikolaou S, Kookos IK, Koutinas AA (2016) Valorisation of side streams from wheat milling and confectionery industries for consolidated production and extraction of microbial lipids. Food Chem 198:85–92PubMedCrossRefGoogle Scholar
  168. Tsolcha ON, Tekerlekopoulou AG, Akratos CS, Bellou S, Aggelis G, Katsiapi M, Moustaka-gouni M, Vayenas DV (2015) Treatment of second cheese whey effluents using a Choricystis-based system with simultaneous lipid production. J Chem Technol Biotechnol 91:2349–2359CrossRefGoogle Scholar
  169. Vamvakaki AN, Kandarakis I, Kaminarides S, Komaitis M, Papanikolaou S (2010) Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng Life Sci 10:348–360CrossRefGoogle Scholar
  170. Van Cleve J, Weissman DB (2015) Measuring ruggedness in fitness landscapes: Fig. 1. Proc Natl Acad Sci 112:7345–7346PubMedPubMedCentralCrossRefGoogle Scholar
  171. Venkataram S, Dunn B, Li Y, Agarwala A, Chang J, Ebel ER, Geiler-Samerotte K, Hérissant L, Blundell JR, Levy SF, Fisher DS, Sherlock G, Petrov DA (2016) Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast. Cell 166:1585–1596PubMedPubMedCentralCrossRefGoogle Scholar
  172. Wallace-Salinas V, Gorwa-Grauslund MF (2013) Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuels 6:151PubMedPubMedCentralCrossRefGoogle Scholar
  173. Wan N, DeLorenzo DM, He L, You L, Immethun CM, Wang G, Baidoo EEK, Hollinshead W, Keasling JD, Moon TS, Tang YJ (2017) Cyanobacterial carbon metabolism: Fluxome plasticity and oxygen dependence. Biotechnol Bioeng 114:1593–1602PubMedCrossRefGoogle Scholar
  174. Wang Z, Xu H, Wang G, Chi Z, Chi Z (2013) Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. BBA - Mol Cell Biol Lipids 1831:675–682CrossRefGoogle Scholar
  175. Wang J, Xu R, Wang R, Haque ME, Liu A (2016) Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates. Biosci Biotechnol Biochem 80:1214–1222PubMedCrossRefGoogle Scholar
  176. Wasylenko TM, Ahn WS, Stephanopoulos G (2015) The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng 30:27–39PubMedCrossRefGoogle Scholar
  177. Wenger JW, Piotrowski J, Nagarajan S, Chiotti K, Sherlock G, Rosenzweig F (2011) Hunger artists: Yeast adapted to carbon limitation show trade-offs under carbon sufficiency. PLoS Genet 7(8):e1002202PubMedPubMedCentralCrossRefGoogle Scholar
  178. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LML, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukariot Cell 9:1251–1261CrossRefGoogle Scholar
  179. Wu J, Zhang X, Xia X, Dong M (2017) A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli. Metab Eng 41:115–124PubMedCrossRefGoogle Scholar
  180. Wünsche A, Dinh DM, Satterwhite RS, Arenas CD, Stoebel DM, Cooper TF (2017) Diminishing-returns epistasis decreases adaptability along an evolutionary trajectory. Nat Ecol Evol 1:0061.  https://doi.org/10.5061/dryad.7hh20/2
  181. Wynn JP, Hamidt A, Ratledge C (1999) The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145:1911–1917PubMedCrossRefGoogle Scholar
  182. Xie D, Jackson EN, Zhu Q (2015) Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: From fundamental research to commercial production. Appl Microbiol Biotechnol 99:1599–1610PubMedPubMedCentralCrossRefGoogle Scholar
  183. Xue Z, Sharpe PL, Hong S, Yadav NS, Xie D, Short DR, Damude HG, Rupert RA, Seip JE, Wang J, Pollak DW, Bostick MW, Bosak MD, Macool DJ, Hollerbach DH, Zhang H, Arcilla DM, Bledsoe SA, Croker K, Mccord EF, Tyreus BD, Jackson EN, Zhu Q (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31:734–740PubMedCrossRefGoogle Scholar
  184. Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9PubMedCrossRefGoogle Scholar
  185. Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum RJ, Aljinovic G, Pohl TM, Rothstein R, Sturley SL (1996) Sterol esterification in yeast: A two-gene process. Science 272:1353–1356PubMedCrossRefGoogle Scholar
  186. Yang J, Hu X, Zhang H, Chen H, Kargbo MR, Zhao J, Song Y, Chen YQ, Zhang H, Chen W (2014) Expression, purification, and characterization of NADP+- dependent malic enzyme from the oleaginous fungus Mortierella alpina. Appl Biochem Biotechnol 173:1849–1857PubMedCrossRefGoogle Scholar
  187. Yona AH, Manor YS, Herbst RH, Romano GH, Mitchell A, Kupiec M, Pilpel Y, Dahan O (2012) Chromosomal duplication is a transient evolutionary solution to stress. Proc Natl Acad Sci 109:21010–21015PubMedPubMedCentralCrossRefGoogle Scholar
  188. Yu C, Kennedy NJ, Chang CCY, Rothblatt J (1996) Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA:sterol acyltransferases. J Biol Chem 271:24157–24163PubMedCrossRefGoogle Scholar
  189. Zhang Y, Adams IP, Ratledge C (2007) Malic enzyme: The controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiol (United Kingdom) 153:2013–2025Google Scholar
  190. Zhang H, Zhang L, Chen H, Chen YQ, Ratledge C, Song Y, Chen W (2013) Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation. Biotechnol Lett 35:2091–2098PubMedCrossRefGoogle Scholar
  191. Zhang H, Zhang L, Chen H, Chen YQ, Chen W, Song Y, Ratledge C (2014) Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP:citrate lyase from Mus musculus. J Biotechnol 192:78–84PubMedCrossRefGoogle Scholar
  192. Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV (2016) Engineering Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng 113:1056–1066PubMedCrossRefGoogle Scholar
  193. Zhang C, Yang L, Ding Y, Wang Y, Lan L, Ma Q, Chi X, Wei P, Zhao Y, Steinbüchel A, Zhang H, Liu P (2017) Bacterial lipid droplets bind to DNA via an intermediary protein that enhances survival under stress. Nat Commun 8:15979PubMedPubMedCentralCrossRefGoogle Scholar
  194. Zhu Z, Ding Y, Gong Z, Yang L, Zhang S, Zhang C, Lin X, Shen H, Zou H, Xie Z, Yang F, Zhao X, Liu P, Zhaoa ZK (2015) Dynamics of the lipid droplet proteome of the oleaginous yeast Rhodosporidium toruloides. Eukaryot Cell 14:252–264PubMedPubMedCentralCrossRefGoogle Scholar
  195. Zhu Z, Zhou YJ, Krivoruchko A, Grininger M, Zhao ZK, Nielsen J (2017) Expanding the product portfolio of fungal type I fatty acid synthases. Nat Chem Biol 13:360–362PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of BiologyUniversity of PatrasPatrasGreece
  2. 2.Department of GeneticsStanford UniversityStanfordUSA
  3. 3.Department of Food Science and Human NutritionAgricultural University of AthensAthensGreece

Personalised recommendations