Applied Microbiology and Biotechnology

, Volume 102, Issue 5, pp 2455–2464 | Cite as

Free-living bacteria and potential bacterial pathogens in sewage treatment plants

  • Kailong Huang
  • Yanping Mao
  • Fuzheng Zhao
  • Xu-Xiang Zhang
  • Feng Ju
  • Lin Ye
  • Yulin Wang
  • Bing Li
  • Hongqiang Ren
  • Tong Zhang
Environmental biotechnology


To comprehensively understand the profile of free-living bacteria and potential bacterial pathogens in sewage treatment plants (STPs), this study applied high-throughput sequencing-based metagenomics approaches to investigate the effects of activated sludge (AS) treatment process and ultraviolet (UV) disinfection on the community of bacterial pathogens in two full-scale STPs. A total of 23 bacterial genera were identified as free-living bacteria, and 243 species/OTU97% were identified as potential bacterial pathogens, 6 of which were confidently detected in the STPs (with the total abundances ranging from 0.02 to 14.19%). Both diversity and relative abundance of the detected bacterial pathogens decreased obviously after AS treatment process (p < 0.05), and increased slightly after sedimentation (p < 0.05). UV disinfection shows no obvious effects on the total relative abundance of the free-living pathogenic bacteria in sewage. Although large amounts of the particle-bound pathogens were eliminated through the sewage treatment process, the STPs could not effectively remove the free-living bacterial pathogens, and some pathogenic bacteria (e.g., Pseudomonas aeruginosa) present in the effluent had higher relative abundance after UV disinfection. Overall, the results extend our knowledge regarding the community of potential pathogens (especially free-living pathogens) in STPs.


Pathogenic bacteria Free-living bacteria Sewage treatment plant Metagenomic analysis Network analysis 



Dr. Y. Mao wishes to appreciate the financial support of the Natural Science Foundation of Guangdong (2017A030313315), Shenzhen Science & Technology Projects (JCYJ20160520165135743, ZDSYS201606061530079), and the National Science Foundation of Shenzhen University (Grant Nos. 827-000223 and 2016008).

Funding information

This study was financially supported by National Natural Science Foundation of China (51290282 and 51608329), National Science & Technology Support Program of China (2014BAC08B04), and Hong Kong General Research Fund (172057/15E).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_8796_MOESM1_ESM.pdf (2.1 mb)
ESM 1 (PDF 2155 kb)


  1. Albertsen M, Hansen LBS, Saunders AM, Nielsen PH, Nielsen KL (2012) A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME J 6(6):1094–1106. CrossRefPubMedGoogle Scholar
  2. Aw TG, Rose JB (2012) Detection of pathogens in water: from phylochips to qPCR to pyrosequencing. Curr Opin Biotechnol 23(3):422–430. CrossRefPubMedGoogle Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300Google Scholar
  4. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cai L, Zhang T (2013) Detecting human bacterial pathogens in wastewater treatment plants by a high-throughput shotgun sequencing technique. Environ Sci Technol 47(10):5433–5441. CrossRefPubMedGoogle Scholar
  6. Cai L, Ju F, Zhang T (2014) Tracking human sewage microbiome in a municipal wastewater treatment plant. Appl Microbiol Biotechnol 98(7):3317–3326. CrossRefPubMedGoogle Scholar
  7. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen L, Zheng D, Liu B, Yang J, Jin Q (2016) VFDB 2016: hierarchical and refined dataset for big data analysis-10 years on. Nucleic Acids Res 44(1):694–697CrossRefGoogle Scholar
  9. Cheng H-WA, Lucy FE, Broaders MA, Mastitsky SE, Chen C-H, Murray A (2012) Municipal wastewater treatment plants as pathogen removal systems and as a contamination source of noroviruses and Enterococcus faecalis. J Water Health 10(3):380–389. CrossRefPubMedGoogle Scholar
  10. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Compl Syst 1695(5):1–9Google Scholar
  11. Elmund GK, Allen MJ, Rice EW (1999) Comparison of Escherichia coli, total coliform, and fecal coliform populations as indicators of wastewater treatment efficiency. Water Environ Res 71(3):332–339. CrossRefGoogle Scholar
  12. Fang H, Wang H, Cai L, Yu Y (2014) Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. Environ Sci Technol 49(2):1095–1104CrossRefGoogle Scholar
  13. Fouts DE, Matthias MA, Adhikarla H, Adler B, Amorim-Santos L, Berg DE, Bulach D, Buschiazzo A, Chang Y-F, Galloway RL (2016) What makes a bacterial species pathogenic?: comparative genomic analysis of the genus Leptospira. PLoS Negl Trop Dis 10(2):e0004403. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gomez-Alvarez V, Teal TK, Schmidt TM (2009) Systematic artifacts in metagenomes from complex microbial communities. ISME J 3(11):1314–1317. CrossRefPubMedGoogle Scholar
  15. Guo MT, Yuan QB, Yang J (2013) Microbial selectivity of UV treatment on antibiotic-resistant heterotrophic bacteria in secondary effluents of a municipal wastewater treatment plant. Water Res 47(16):6388–6394. CrossRefPubMedGoogle Scholar
  16. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21(3):494–504. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hahn MW, Scheuerl T, Jezberová J, Koll U, Jezbera J, Šimek K, Vannini C, Petroni G, Wu QL (2012) The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living Polynucleobacter population. PLoS One 7(3):e32772. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hassen A, Kallali H, Jedidi N, Annabi M, Ennabli M, Boudabous A (1997) Disinfection of wastewaters by UV irradiation in a semi-industrial pilot plant: effect of UV doses on Pseudomonas aeruginosa. Vecteur Environ 30(1):77–81Google Scholar
  19. Hassen A, Mahrouk M, Ouzari H, Cherif M, Boudabous A, Damelincourt JJ (2000) UV disinfection of treated wastewater in a large-scale pilot plant and inactivation of selected bacteria in a laboratory UV device. Bioresour Technol 74(2):141–150. CrossRefGoogle Scholar
  20. Huang K, Zhang X-X, Shi P, Wu B, Ren H (2014) A comprehensive insight into bacterial virulence in drinking water using 454 pyrosequencing and Illumina high-throughput sequencing. Ecotoxicol Environ Saf 109:15–21. CrossRefPubMedGoogle Scholar
  21. Ibekwe AM, Leddy M, Murinda SE (2013) Potential human pathogenic bacteria in a mixed urban watershed as revealed by pyrosequencing. PLoS One 8(11):e79490CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ju F, Xia Y, Guo F, Wang Z, Zhang T (2014) Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants. Environ Microbiol 16(8):2421–2432. CrossRefPubMedGoogle Scholar
  23. Lee D-Y, Shannon K, Beaudette LA (2006) Detection of bacterial pathogens in municipal wastewater using an oligonucleotide microarray and real-time quantitative PCR. J Microbiol Methods 65(3):453–467. CrossRefPubMedGoogle Scholar
  24. Lee JE, Lee S, Sung J, Ko G (2011) Analysis of human and animal fecal microbiota for microbial source tracking. ISME J 5(2):362–365. CrossRefPubMedGoogle Scholar
  25. Li B, Ju F, Cai L, Zhang T (2015) Profile and fate of bacterial pathogens in sewage treatment plants revealed by high-throughput metagenomic approach. Environ Sci Technol 49(17):10492–10502. CrossRefPubMedGoogle Scholar
  26. Lu X, Zhang X-X, Wang Z, Huang K, Wang Y, Liang W, Tan Y, Liu B, Tang J (2015) Bacterial pathogens and community composition in advanced sewage treatment systems revealed by metagenomics analysis based on high-throughput sequencing. PLoS One 10(5):e0125549. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ma L, Xia Y, Li B, Yang Y, Li LG, Tiedje JM, Zhang T (2015) Metagenomic assembly reveals hosts of antibiotic resistance genes and the shared resistome in pig, chicken, and human feces. Environ Sci Technol 50(1):420–427. CrossRefPubMedGoogle Scholar
  28. Malic S, Hill KE, Hayes A, Percival SL, Thomas DW, Williams DW (2009) Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology 155(8):2603–2611. CrossRefPubMedGoogle Scholar
  29. Mestre M, Borrull E, Sala M, Gasol JM (2017) Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J 11(4):999–1010. CrossRefPubMedGoogle Scholar
  30. Milici M, Vital M, Tomasch J, Badewien TH, Giebel HA, Plumeier I, Wang H, Pieper DH, Wagner-Döbler I, Simon M (2017) Diversity and community composition of particle-associated and free-living bacteria in mesopelagic and bathypelagic Southern Ocean water masses: evidence of dispersal limitation in the Bransfield Strait. Limnol Oceanogr 62(3):1080–1095. CrossRefGoogle Scholar
  31. Mukherjee S, Seshadri R, Varghese NJ, Eloe-Fadrosh EA, Meier-Kolthoff JP, Goker M, Coates RC, Hadjithomas M, Pavlopoulos GA, Paez-Espino D, Yoshikuni Y, Visel A, Whitman WB, Garrity GM, Eisen JA, Hugenholtz P, Pati A, Ivanova NN, Woyke T, Klenk HP, Kyrpides NC (2017) 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol 35(7):676–683. CrossRefPubMedGoogle Scholar
  32. Munguia-Fragozo P, Alatorre-Jacome O, Rico-Garcia E, Torres-Pacheco I, Cruz-Hernandez A, Ocampo-Velazquez RV, Garcia-Trejo JF, Guevara-Gonzalez RG (2015) Perspective for aquaponic systems: “omic” technologies for microbial community analysis. Biomed Res Int 2015:480386CrossRefPubMedPubMedCentralGoogle Scholar
  33. Paredes-Sabja D, Sarker N, Setlow B, Setlow P, Sarker MR (2008) Roles of DacB and Spm proteins in Clostridium perfringens spore resistance to moist heat, chemicals, and UV radiation. Appl Environ Microbiol 74(12):3730–3738CrossRefPubMedPubMedCentralGoogle Scholar
  34. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055CrossRefPubMedPubMedCentralGoogle Scholar
  35. Peng Y, Leung HC, Yiu S-M, Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428. CrossRefPubMedGoogle Scholar
  36. Pozos N, Scow K, Wuertz S, Darby J (2004) UV disinfection in a model distribution system: biofilm growth and microbial community. Water Res 38(13):3083–3091. CrossRefPubMedGoogle Scholar
  37. Savichtcheva O, Okabe S (2006) Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Res 40(13):2463–2476. CrossRefPubMedGoogle Scholar
  38. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Shanks OC, Newton RJ, Kelty CA, Huse SM, Sogin ML, McLellan SL (2013) Comparison of the microbial community structures of untreated wastewaters from different geographic locales. Appl Environ Microbiol 79(9):2906–2913. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tao W, Zhang X-X, Zhao F, Huang K, Ma H, Wang Z, Ye L, Ren H (2016) High levels of antibiotic resistance genes and their correlations with bacterial community and mobile genetic elements in pharmaceutical wastewater treatment bioreactors. PLoS One 11(6):e0156854. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Toze S (1999) PCR and the detection of microbial pathogens in water and wastewater. Water Res 33(17):3545–3556. CrossRefGoogle Scholar
  43. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12(10):902–903. CrossRefPubMedGoogle Scholar
  44. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wells C, Wilkins T (1996) Clostridia: spore forming anaerobic Bacilli. In: Baron S (ed) Baron’s medical microbiology, 4th edn. University of Texas Medical Branch, TexasGoogle Scholar
  46. Wen Q, Tutuka C, Keegan A, Jin B (2009) Fate of pathogenic microorganisms and indicators in secondary activated sludge wastewater treatment plants. J Environ Manag 90(3):1442–1447. CrossRefGoogle Scholar
  47. Wéry N, Lhoutellier C, Ducray F, Delgenès J-P, Godon J-J (2008) Behaviour of pathogenic and indicator bacteria during urban wastewater treatment and sludge composting, as revealed by quantitative PCR. Water Res 42(1):53–62. CrossRefPubMedGoogle Scholar
  48. WHO (2011) Guidelines for drinking-water quality: microbial aspects, 4th edn. Geneva. Accessed 19 Aug 2015
  49. Woolhouse M, Gowtage-Sequeria S, Evans B (2015) T16: quantitative analysis of the characteristics of emerging and re-emerging human pathogens. Centre for Infectious Diseases, University of Edinburgh. Accessed 25 July 2015
  50. Ye L, Zhang T (2011) Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing. Environ Sci Technol 45(17):7173–7179. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kailong Huang
    • 1
    • 2
  • Yanping Mao
    • 2
    • 3
    • 4
  • Fuzheng Zhao
    • 1
  • Xu-Xiang Zhang
    • 1
  • Feng Ju
    • 2
  • Lin Ye
    • 1
  • Yulin Wang
    • 2
  • Bing Li
    • 2
  • Hongqiang Ren
    • 1
  • Tong Zhang
    • 1
    • 2
  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, School of the EnvironmentNanjing UniversityNanjingChina
  2. 2.Environmental Biotechnology Lab, Department of Civil EngineeringThe University of Hong KongHong KongChina
  3. 3.College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
  4. 4.Shenzhen Key Laboratory of Environmental Chemistry and Ecological RemediationShenzhen UniversityShenzhenChina

Personalised recommendations