Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 6, pp 2607–2620 | Cite as

Production of extracellular heterologous proteins in Streptomyces rimosus, producer of the antibiotic oxytetracycline

  • Andrés Felipe Carrillo Rincón
  • Vasilka Magdevska
  • Luka Kranjc
  • Štefan Fujs
  • Rolf Müller
  • Hrvoje Petković
Biotechnological products and process engineering

Abstract

Among the Streptomyces species, Streptomyces lividans has often been used for the production of heterologous proteins as it can secrete target proteins directly into the culture medium. Streptomyces rimosus, on the other hand, has for long been used at an industrial scale for oxytetracycline production, and it holds ‘Generally Recognised As Safe’ status. There are a number of properties of S. rimosus that make this industrial strain an attractive candidate as a host for heterologous protein production, including (1) rapid growth rate; (2) growth as short fragments, as for Escherichia coli; (3) high efficiency of transformation by electroporation; and (4) secretion of proteins into the culture medium. In this study, we specifically focused our efforts on an exploration of the use of the Sec secretory pathway to export heterologous proteins in a S. rimosus host. We aimed to develop a genetic tool kit for S. rimosus and to evaluate the extracellular production of target heterologous proteins of this industrial host. This study demonstrates that S. rimosus can produce the industrially important enzyme phytase AppA extracellularly, and analogous to E. coli as a host, application of His-Tag/Ni-affinity chromatography provides a simple and rapid approach to purify active phytase AppA in S. rimosus. We thus demonstrate that S. rimosus can be used as a potential alternative protein expression system.

Keywords

Streptomyces rimosus Heterologous protein production Gene expression Gene tools Reporter system Phytase 

Notes

Acknowledgements

This study was funded by the Ministry of Higher Education, Science and Technology (Slovenian Research Agency, ARRS, grant no. L4-7117) to HP and postdoctoral fellowship grant no. C3330-17-529038 ‘Raziskovalci-2.0-UL-BF-529038’ by the Ministry of Higher Education, Science and Technology—Republic of Slovenia to L.K., Slovene Human Resources, Development and Scholarship Funds for the award of the PhD fellowship (grant no. 58-T-003) to V.M. and PhD fellowship to A.F.C.R. in the scope of ‘Augusto González Linares’ (University of Cantabria, Spain).

Funding

This study was funded by the Ministry of Higher Education, Science and Technology, Slovenian Research Agency (grant no. L4-7117), grant no. C3330-17-529038 ‘Raziskovalci-2.0-UL-BF-529038’ by the Ministry of Higher Education, Science and Technology—Republic of Slovenia, Slovene Human Resources, Development and Scholarship Funds (grant no. 58-T-003) and ‘Augusto González Linares’ program (University of Cantabria, Spain).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

A.F.C.R. declares that he has no conflict of interest. V.M. declares that she has no conflict of interest. L.K. declares that he has no conflict of interest. Š.F. is a shareholder of Acies Bio d.o.o.. R.M. declares that he has no conflict of interest, and H.P. declares that he has no conflict of interest.

Supplementary material

253_2018_8793_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1101 kb)

References

  1. Bibb MJ, Janssen GR, Ward JM (1985) Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38(1-3):215–226.  https://doi.org/10.1016/0378-1119(85)90220-3 CrossRefPubMedGoogle Scholar
  2. Bilyk B, Horbal L, Luzhetskyy A (2017) Chromosomal position effect influences the heterologous expression of genes and biosynthetic gene clusters in Streptomyces albus J1074. Microb Cell Factories 16(1):5.  https://doi.org/10.1186/s12934-016-0619-z
  3. Binnie C, Cossar JD, Stewart DI (1997) Heterologous biopharmaceutical protein expression in Streptomyces. Trends Biotechnol 15(8):315–320.  https://doi.org/10.1016/S0167-7799(97)01062-7 CrossRefPubMedGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72(1-2):248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  5. Chambers A, Hunter I (1984) Construction and use of a bifunctional streptomycete cosmid. Biochem Soc Trans 12(4):644–645.  https://doi.org/10.1042/bst0120644 CrossRefGoogle Scholar
  6. Dassa J, Marck C, Boquet PL (1990) The complete nucleotide sequence of the Escherichia coli gene appA reveals significant homology between pH 2.5 acid phosphatase and glucose-1-phosphatase. J Bacteriol 172:5497–5500Google Scholar
  7. Diaz M, Adham SA, Ramon D, Gil JA, Santamaria RI (2004) Streptomyces lividans and Brevibacterium lactofermentum as heterologous hosts for the production of X22 xylanase from Aspergillus nidulans. Appl Microbiol Biotechnol 65(4):401–406.  https://doi.org/10.1007/s00253-004-1633-3 CrossRefPubMedGoogle Scholar
  8. Golovan S, Wang G, Zhang J, Forsberg CW (2000) Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol 46(1):59–71.  https://doi.org/10.1139/cjm-46-1-59 CrossRefPubMedGoogle Scholar
  9. Gravius B, Bezmalinovic T, Hranueli D, Cullum J (1993) Genetic instability and strain degeneration in Streptomyces rimosus. Appl Environ Microbiol 59(7):2220–2228PubMedPubMedCentralGoogle Scholar
  10. Gullon S, Vicente RL, Valverde JR, Marin S, Mellado RP (2015) Exploring the feasibility of the sec route to secrete proteins using the tat route in Streptomyces lividans. Mol Biotechnol 57(10):931–938.  https://doi.org/10.1007/s12033-015-9883-0 CrossRefPubMedGoogle Scholar
  11. Henderson G, Krygsman P, Liu CJ, Davey CC, Malek LT (1987) Characterization and structure of genes for proteases A and B from Streptomyces griseus. J Bacteriol 169(8):3778–3784.  https://doi.org/10.1128/jb.169.8.3778-3784.1987 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, Kobayashi M (2004) Hyper-inducible expression system for streptomycetes. Proc Natl Acad Sci U S A 101(39):14031–14035.  https://doi.org/10.1073/pnas.0406058101
  13. Hranueli D, Pigac J, Vesligaj M (1979) Characterization and persistence of actinophage RP2 isolated from Streptomyces rimosus ATCC 10970. J Gen Microbiol 114:295–303.  https://doi.org/10.1099/00221287-114-2-295
  14. Hunter ISD (1985) Cosmid cloning vectors. Google Patents,Google Scholar
  15. Ingram C, Brawner M, Youngman P, Westpheling J (1989) xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J Bacteriol 171(12):6617–6624.  https://doi.org/10.1128/jb.171.12.6617-6624.1989 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kendall KJ, Cohen SN (1988) Complete nucleotide sequence of the Streptomyces lividans plasmid pIJ101 and correlation of the sequence with genetic properties. J Bacteriol 170(10):4634–4651.  https://doi.org/10.1128/jb.170.10.4634-4651.1988 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation Norwich, United KingdomGoogle Scholar
  18. Kieser T, Hopwood DA, Wright HM, Thompson CJ (1982) pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet 185(2):223–228.  https://doi.org/10.1007/BF00330791 CrossRefPubMedGoogle Scholar
  19. Lammertyn E, Anne J (1998) Modifications of Streptomyces signal peptides and their effects on protein production and secretion. FEMS Microbiol Lett 160(1):1–10.  https://doi.org/10.1111/j.1574-6968.1998.tb12882.x CrossRefPubMedGoogle Scholar
  20. Lammertyn E, Desmyter S, Schacht S, Van Mellaert L, Anne J (1998) Influence of charge variation in the Streptomyces venezuelae Alpha-amylase signal peptide on heterologous protein production by Streptomyces lividans. Appl Microbiol Biotechnol 49:424–430Google Scholar
  21. Lee S, Kim T, Stahl CH, Lei XG (2005) Expression of Escherichia coli AppA2 phytase in four yeast systems. Biotechnol Lett 27(5):327–334.  https://doi.org/10.1007/s10529-005-0704-6 CrossRefPubMedGoogle Scholar
  22. MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111(1):61–68.  https://doi.org/10.1016/0378-1119(92)90603-M CrossRefPubMedGoogle Scholar
  23. Magdevska V, Gaber R, Goranovic D, Kuscer E, Boakes S, Duran Alonso MB, Santamaria RI, Raspor P, Leadlay PF, Fujs S, Petkovic H (2010) Robust reporter system based on chalcone synthase rppA gene from Saccharopolyspora erythraea. J Microbiol Methods 83(2):111–119.  https://doi.org/10.1016/j.mimet.2010.08.001 CrossRefPubMedGoogle Scholar
  24. Mazodier P, Thompson C, Boccard F (1990) The chromosomal integration site of the Streptomyces element pSAM2 overlaps a putative tRNA gene conserved among actinomycetes. Mol Gen Genet 222:431–434Google Scholar
  25. Miyazaki T, Noda S, Tanaka T, Kondo A (2013) Hyper secretion of Thermobifida fusca beta-glucosidase via a tat-dependent signal peptide using Streptomyces lividans. Microb Cell Factories 12(1):88.  https://doi.org/10.1186/1475-2859-12-88 CrossRefGoogle Scholar
  26. Pandey AK, Raman S, Proff R, Joshi S, Kang CM, Rubin EJ, Husson RN, Sassetti CM (2009) Nitrile-inducible gene expression in mycobacteria. Tuberculosis (Edinb) 89(1):12–16.  https://doi.org/10.1016/j.tube.2008.07.007 CrossRefGoogle Scholar
  27. Pandza K, Pfalzer G, Cullum J, Hranueli D (1997) Physical mapping shows that the unstable oxytetracycline gene cluster of Streptomyces rimosus lies close to one end of the linear chromosome. Microbiology 143(Pt 5):1493–1501.  https://doi.org/10.1099/00221287-143-5-1493 CrossRefPubMedGoogle Scholar
  28. Petkovic H, Cullum J, Hranueli D, Hunter IS, Peric-Concha N, Pigac J, Thamchaipenet A, Vujaklija D, Long PF (2006) Genetics of Streptomyces rimosus, the oxytetracycline producer. Microbiol Mol Biol Rev 70(3):704–728.  https://doi.org/10.1128/mmbr.00004-06 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pigac J, Schrempf H (1995) A simple and rapid method of transformation of Streptomyces rimosus R6 and other streptomycetes by electroporation. Appl Environ Microbiol 61(1):352–356PubMedPubMedCentralGoogle Scholar
  30. Renko M, Vitale L, Kokalj M, Pokorny M (1989) Streptomyces rimosus extracellular proteases. Appl Microbiol Biotechnol 31:38–44  https://doi.org/10.1007/bf00252523, 1
  31. Rhodes PM, Hunter IS, Friend EJ, Warren M (1984) Recombinant DNA methods for the oxytetracycline producer Streptomyces rimosus. Biochem Soc Trans 12(4):586–587.  https://doi.org/10.1042/bst0120586 CrossRefPubMedGoogle Scholar
  32. Rodriguez-Garcia A, Combes P, Perez-Redondo R, Smith MC, Smith MC (2005) Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces. Nucleic Acids Res 33(9):e87.  https://doi.org/10.1093/nar/gni086 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ruiz-Arribas A, Sanchez P, Calvete JJ, Raida M, Fernandez-Abalos JM, Santamaria RI (1997) Analysis of xysA, a gene from Streptomyces halstedii JM8 that encodes a 45-kilodalton modular xylanase, Xys1. Appl Environ Microbiol 63(8):2983–2988PubMedPubMedCentralGoogle Scholar
  34. Sinsereekul N, Wangkam T, Thamchaipenet A, Srikhirin T, Eurwilaichitr L, Champreda V (2010) Recombinant expression of BTA hydrolase in Streptomyces rimosus and catalytic analysis on polyesters by surface plasmon resonance. Appl Microbiol Biotechnol 86(6):1775–1784.  https://doi.org/10.1007/s00253-010-2465-y CrossRefPubMedGoogle Scholar
  35. Smokvina T, Mazodier P, Boccard F, Thompson CJ, Guerineau M (1990) Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94(1):53–59.  https://doi.org/10.1016/0378-1119(90)90467-6 CrossRefPubMedGoogle Scholar
  36. Sola-Landa A, Rodriguez-Garcia A, Franco-Dominguez E, Martin JF (2005) Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 56(5):1373–1385.  https://doi.org/10.1111/j.1365-2958.2005.04631.x CrossRefPubMedGoogle Scholar
  37. Stahl CH, Wilson DB, Lei XG (2003) Comparison of extracellular Escherichia coli AppA phytases expressed in Streptomyces lividans and Pichia pastoris. Biotechnol Lett 25(10):827–831.  https://doi.org/10.1023/A:1023568826461 CrossRefPubMedGoogle Scholar
  38. Van Mellaert L, Lammertyn E, Schacht S, Proost P, Van Damme J, Wroblowski B, Anne J, Scarcez T, Sablon E, Raeymaeckers J, Van Broekhoven A (1998) Molecular characterization of a novel subtilisin inhibitor protein produced by Streptomyces venezuelae CBS762.70. DNA Seq 9:19–30Google Scholar
  39. Van Roosmalen ML, Geukens N, Jongbloed JD, Tjalsma H, Dubois JY, Bron S, van Dijl JM, Anne J (2004) Type I signal peptidases of gram-positive bacteria. Biochim Biophys Acta 1694(1-3):279–297.  https://doi.org/10.1016/j.bbamcr.2004.05.006 CrossRefPubMedGoogle Scholar
  40. Vigal T, Gil JA, Daza A, Garcia-Gonzalez MD, Martin JF (1991) Cloning, characterization and expression of an alpha-amylase gene from Streptomyces griseus IMRU3570. Mol Gen Genet 225(2):278–288.  https://doi.org/10.1007/BF00269860 CrossRefPubMedGoogle Scholar
  41. Virolle MJ, Long CM, Chang S, Bibb MJ (1988) Cloning, characterisation and regulation of an alpha-amylase gene from Streptomyces venezuelae. Gene 74(2):321–334.  https://doi.org/10.1016/0378-1119(88)90166-7 CrossRefPubMedGoogle Scholar
  42. Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M, Pohlschroder M, Palmer T (2006) The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci U S A 103(47):17927–17932.  https://doi.org/10.1073/pnas.0607025103
  43. Yin S, Wang W, Wang X, Zhu Y, Jia X, Li S, Yuan F, Zhang Y, Yang K (2015) Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus. Microb Cell Factories 14(1):46.  https://doi.org/10.1186/s12934-015-0231-7

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)Universidad de Cantabria, CSICSantanderSpain
  2. 2.Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Pharmaceutical BiotechnologySaarland UniversitySaarbrückenGermany
  3. 3.Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Acies BioLjubljanaSlovenia

Personalised recommendations