Applied Microbiology and Biotechnology

, Volume 102, Issue 5, pp 2425–2439 | Cite as

Isolation and characterization of a heterologously expressed bacterial laccase from the anaerobe Geobacter metallireducens

  • Francesca Berini
  • Marko Verce
  • Luka Ausec
  • Elena Rosini
  • Fabio Tonin
  • Loredano Pollegioni
  • Ines Mandić-Mulec
Environmental biotechnology

Abstract

Bioinformatics has revealed the presence of putative laccase genes in diverse bacteria, including extremophiles, autotrophs, and, interestingly, anaerobes. Integrity of laccase genes in anaerobes has been questioned, since laccases oxidize a variety of compounds using molecular oxygen as the electron acceptor. The genome of the anaerobe Geobacter metallireducens GS-15 contains five genes for laccase-like multicopper oxidases. In order to show whether one of the predicted genes encodes a functional laccase, the protein encoded by GMET_RS10855 was heterologously expressed in Escherichia coli cells. The His6-tagged enzyme (named GeoLacc) was purified to a large extent in the apoprotein, inactive form: incubation with CuSO4 allowed a 43-fold increase of the specific activity yielding a metallo-enzyme. The purified enzyme oxidized some of the typical laccase substrates, including 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine, and 2,6-dimethoxyphenol (2,6-DMP), along with pyrogallol and K4[Fe(CN)6]. Temperature optimum was 75 °C and pH optimum for ABTS and 2,6-DMP oxidation was ~ 6.0. As observed for other laccases, the enzyme was inhibited by halide anions and was sensitive to increasing concentrations of dimethyl sulfoxide and Tween-80. Notably, GeoLacc possesses a very high affinity for dioxygen: a similar activity was measured performing the reaction at air-saturated or microaerophilic conditions.

Keywords

Bacterial laccase Characterization Bioinformatics Heterologous expression Anaerobic microorganisms 

Notes

Acknowledgments

The authors thank Derek R. Lovley of the University of Massachusetts for providing the genomic DNA of Geobacter metallireducens GS-15.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Afreen S, Shamsi TN, Baig MA, Ahmad N, Fatima S, Qureshi MI, Hassan MI, Fatma T (2017) A novel multicopper oxidase (laccase) from cyanobacteria: purification, characterization with potential in the decolorization of anthraquinonic dye. PLoS One 12(4):e0175144.  https://doi.org/10.1371/journal.pone.0175144 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aklujkar M, Krushkal J, DiBartolo G, Lapidus A, Land ML, Lovley DR (2009) The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. BMC Microbiol 9(1):109.  https://doi.org/10.1186/1471-2180-9-109 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Al-Kahem Al-Balawi TH, Wood AL, Solis A, Cooper T, Barabote RD (2017) Anoxybacillus sp. Strain UARK-01, a new thermophilic soil bacterium with hyperthermostable alkaline laccase activity. Curr Microbiol 74(6):762–771CrossRefPubMedGoogle Scholar
  4. Arias ME, Arenas M, Rodríguez J, Soliveri J, Ball AS, Hernández M (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol 96(4):1953–1958CrossRefGoogle Scholar
  5. Ausec L, Zakrzewski M, Goesmann A, Schlüter A, Mandic-Mulec I (2011) Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One 10(6):e25724CrossRefGoogle Scholar
  6. Ausec L, Črnigoj M, Šnajder M, Ulrih NP, Mandic-Mulec I (2015) Characterization of a novel high-pH-tolerant laccase-like multicopper oxidase and its sequence diversity in Thioalkalivibrio sp. Appl Microbiol Biotechnol 99(23):9987–9999.  https://doi.org/10.1007/s00253-015-6843-3 CrossRefPubMedGoogle Scholar
  7. Ausec L, Berini F, Casciello C, Cretoiu MS, van Elsas JD, Marinelli F, Mandic-Mulec I (2017) The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance. Appl Microbiol Biotechnol 101(15):6261–6276.  https://doi.org/10.1007/s00253-017-8345-y CrossRefPubMedGoogle Scholar
  8. Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD (2010) Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics 26(22):2811–2817.  https://doi.org/10.1093/bioinformatics/btq530 CrossRefPubMedGoogle Scholar
  9. Bains J, Capalash N, Sharma P (2003) Laccase from a non-melanogenic, alkalotolerant gamma-proteobacterium JB isolated from industrial wastewater drained soil. Biotechnol Lett 25(14):1155–1159CrossRefPubMedGoogle Scholar
  10. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30(2):215–242.  https://doi.org/10.1111/j.1574-4976.2005.00010.x CrossRefPubMedGoogle Scholar
  11. Basheer S, Rashid N, Ashraf R, Akram MS, Siddigui MA, Imanaka T, Akhtar M (2017) Identification of a novel copper-activated and halide-tolerant laccase in Geobacillus thermopakistaniensis. Extremophiles 21(3):563–571.  https://doi.org/10.1007/s00792-017-0925-3 CrossRefPubMedGoogle Scholar
  12. Beloqui A, Pita M, Polaina J, Martínez-Arias A, Golyshina OV, Zumárraga M, Yakimov MM, García-Arellano H, Alcalde M, Fernández VM, Elborough K, Andreu LM, Ballesteros A, Plou FJ, Timmis KN, Ferrer M, Golyshin PN (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem 281(32):22933–22942.  https://doi.org/10.1074/jbc.M600577200 CrossRefPubMedGoogle Scholar
  13. Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S (2005) Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167CrossRefPubMedPubMedCentralGoogle Scholar
  14. Caldinelli L, Iametti S, Barbiroli A, Bonomi F, Fessas D, Molla G, Pilone MS, Pollegioni L (2005) Dissecting the structural determinants of the stability of cholesterol oxidase containing covalently bound flavin. J Biol Chem 280(24):22572–22581.  https://doi.org/10.1074/jbc.M500549200 CrossRefPubMedGoogle Scholar
  15. Chen B, Xu WQ, Pan XR, Lu L (2015) A novel non-blue laccase from Bacillus amyloliquefaciens: secretory expression and characterization. Int J Biol Macromol 76:39–44.  https://doi.org/10.1016/j.ijbiomac.2015.02.019 CrossRefPubMedGoogle Scholar
  16. Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179(3):145–150.  https://doi.org/10.1007/s00203-002-0510-7 CrossRefPubMedGoogle Scholar
  17. de Gonzalo G, Colpa DI, Habib MH, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119.  https://doi.org/10.1016/j.jbiotec.2016.08.011 CrossRefPubMedGoogle Scholar
  18. Dubé E, Shareck F, Hurtubise Y, Daneault C, Beauregard M (2008) Homologous cloning, expression, and characterization of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Appl Microbiol Biotechnol 79(4):597–603CrossRefPubMedGoogle Scholar
  19. Durão P, Chen Z, Fernandes AT, Hildebrandt P, Murgida DH, Todorovic S, Pereira MM, Melo EP, Martins LO (2008) Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes. J Biol Inorg Chem 13(2):183–193.  https://doi.org/10.1007/s00775-007-0312-0 CrossRefPubMedGoogle Scholar
  20. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Endo K, Hosono K, Beppu T, Ueda K (2002) A novel extracytoplasmic phenol oxidase of Streptomyces: its possible involvement in the onset of morphogenesis. Microbiology 148(Pt6):1767–1776.  https://doi.org/10.1099/00221287-148-6-1767 CrossRefPubMedGoogle Scholar
  22. Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K (2003) Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J Biochem 133(5):671–677.  https://doi.org/10.1093/jb/mvg086 CrossRefPubMedGoogle Scholar
  23. Enguita FJ, Matias PM, Martins LO, Plàcido D, Henriques AO, Carrondo MA (2002) Spore-coat laccase CotA from Bacillus subtilis: crystallization and preliminary X-ray characterization by the MAD method. Acta Crystallogr D Biol Crystallogr 58(Pt9):1490–1493.  https://doi.org/10.1107/S0907444902011575 CrossRefPubMedGoogle Scholar
  24. Fang W, Fang Z, Zhou P, Chang F, Hong Y, Zhang X, Peng H, Xiao Y (2012a) Evidence for lignin oxidation by the giant panda fecal microbiome. PLoS One 7(11):e50312.  https://doi.org/10.1371/journal.pone.0050312 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fang Z, Li T, Wang Q, Zhang X, Peng H, Fang W, Hong Y, Ge H, Xiao Y (2011) A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Appl Microbiol Biotechnol 89(4):1103–1110CrossRefPubMedGoogle Scholar
  26. Fang ZM, Li TL, Chang F, Zhou P, Fang W, Hong YZ, Zhang XC, Peng H, Xiao YZ (2012b) A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresour Technol 111:36–41.  https://doi.org/10.1016/j.biortech.2012.01.172 CrossRefPubMedGoogle Scholar
  27. Fernandes AT, Soares CM, Pereira MM, Huber R, Grass G, Martins LO (2007) A robust metallo-oxidase from the hyperthermophilic bacterium Aquifex aeolicus. FEBS J 274(11):2683–2694.  https://doi.org/10.1111/j.1742-4658.2007.05803.x CrossRefPubMedGoogle Scholar
  28. Fernandes AT, Damas JM, Todorovic S, Huber R, Baratto MC, Pogni R, Soares CM, Martins LO (2010) The multicopper oxidase from the archeon Pyrobaculum aerophilum shows nitrous oxide reductase activity. FEBS J 277(15):3176–3189.  https://doi.org/10.1111/j.1742-4658.2010.07725.x CrossRefPubMedGoogle Scholar
  29. Frank K, Sippl MJ (2008) High-performance signal peptide prediction based on sequence alignment techniques. Bioinformatics 24(19):2172–2176.  https://doi.org/10.1093/bioinformatics/btn422 CrossRefPubMedGoogle Scholar
  30. Galai S, Limam F, Marzouki MN (2009) A new Stenotrophomonas maltophila strain producing laccase. Use in decolorization of synthetic dyes. Appl Biochem Biotechnol 158(2):416–431CrossRefPubMedGoogle Scholar
  31. Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol Lett 108(2):205–210.  https://doi.org/10.1111/j.1574-6968.1993.tb06100.x CrossRefGoogle Scholar
  32. Grass G, Rensing C (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 286(5):902–908.  https://doi.org/10.1006/bbrc.2001.5474 CrossRefPubMedGoogle Scholar
  33. Guan ZB, Song CM, Zhang N, Zhou W, Xu CW, Zhou LX, Zhao H, Cai X, Liao XR (2014a) Overexpression, characterization, and dye-decolorizing ability of a thermostable, pH-stable, and organic solvent-tolerant laccase from Bacillus pumilus W3. J Mol Catal B Enzym 101:1–6.  https://doi.org/10.1016/j.molcatb.2013.11.009 CrossRefGoogle Scholar
  34. Guan ZB, Zhang N, Song CM, Zhou W, Zhou LX, Zhao H, Xu CW, Cai YJ, Liao XR (2014b) Molecular cloning, characterization, and dye-decolorizing ability of a temperature- and pH-stable laccase from Bacillus subtilis X1. Appl Biochem Biotechnol 172(3):1147–1157.  https://doi.org/10.1007/s12010-013-0614-3 CrossRefPubMedGoogle Scholar
  35. Gunne M, Höppner A, Hagedoorn PL, Urlacher VB (2014) Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus. FEBS J 281(18):4307–4318.  https://doi.org/10.1111/febs.12755 CrossRefPubMedGoogle Scholar
  36. Harris CM, Pollegioni L, Ghisla S (2001) pH and kinetic isotope effects in d-amino acid oxidase catalysis. Eur J Biochem 268(21):5504–5520CrossRefPubMedGoogle Scholar
  37. Hsiao YM, Liu YF, Lee PY, Hsu PC, Tseng SY, Pan YC (2011) Functional characterization of copA gene encoding multicopper oxidase in Xanthomonas campestris pv. campestris. J Agric Food Chem 59(17):9290–9302.  https://doi.org/10.1021/jf2024006 CrossRefPubMedGoogle Scholar
  38. Ihssen J, Reiss R, Luchsinger R, Thöny-Meyer L, Richter M (2015) Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Sci Rep 5:10465CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jimenez-Juarez N, Roman-Miranda R, Beaza A, Sanchez-Amat A, Vazquez-Duhalt R, Valderrama B (2005) Alkali and halide-resistant catalysis by the multipotent oxidase from Marinomonas mediterranea. J Biotechnol 117(1):73–82.  https://doi.org/10.1016/j.jbiotec.2005.01.002 CrossRefPubMedGoogle Scholar
  40. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240.  https://doi.org/10.1093/bioinformatics/btu031 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Käll L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res 35(Web Server issue):W429-432Google Scholar
  42. Kataoka K, Komori H, Ueki Y, Konno Y, Kamitaka Y, Kurose S, Tsujimura S, Higuchi Y, Kano K, Seo D, Sakurai T (2007) Structure and function of the engineered multicopper oxidase CueO from Escherichia coli—deletion of the methionine-rich helical region covering the substrate-binding site. J Mol Biol 373(1):141–152CrossRefPubMedGoogle Scholar
  43. Keesey J (1987) Biochemica information, First edn. Boehringer Mannheim Biochemicals, IndianapolisGoogle Scholar
  44. Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB (2008) Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol 79(2):217–224.  https://doi.org/10.1007/s00253-008-1417-2 CrossRefPubMedGoogle Scholar
  45. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  46. Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43(Database issue):D257–D260.  https://doi.org/10.1093/nar/gku949 CrossRefPubMedGoogle Scholar
  47. Lin WC, Coppi MV, Lovley DR (2004) Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl Environ Microbiol 70(4):2525–2528.  https://doi.org/10.1128/AEM.70.4.2525-2528.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Louis-Jeune C, Andrade-Navarro MA, Perez-Iratxeta C (2012) Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 80(2):374–381.  https://doi.org/10.1002/prot.23188 CrossRefPubMedGoogle Scholar
  49. Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159(4):336–344.  https://doi.org/10.1007/BF00290916 CrossRefPubMedGoogle Scholar
  50. Lu L, Zhao M, Wang TN, Zhao LY, Du MH, Li TL, Li DB (2012) Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04. Bioresour Technol 115:35–40.  https://doi.org/10.1016/j.biortech.2011.07.111 CrossRefPubMedGoogle Scholar
  51. Madhavi V, Lele SS (2009) Laccase: properties and applications. Bioresources 4(4):1694–1717Google Scholar
  52. Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277(24):18849–18859.  https://doi.org/10.1074/jbc.M200827200 CrossRefPubMedGoogle Scholar
  53. Mate DM, Alcalde M (2017) Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 10(6):1457–1467.  https://doi.org/10.1111/1751-7915.12422 CrossRefPubMedGoogle Scholar
  54. McMahon AM, Doyle EM, Brooks S, O’Connor KE (2007) Biochemical characterization of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6. Enzym Microb Technol 40(5):1435–1441.  https://doi.org/10.1016/j.enzmictec.2006.10.020 CrossRefGoogle Scholar
  55. Miyazaki K (2005) A hyperthemophilic laccase from Thermus thermophilus HB27. Extremophiles 9(6):415–425.  https://doi.org/10.1007/s00792-005-0458-z CrossRefPubMedGoogle Scholar
  56. Mohammadian M, Fathi-Roudsari M, Mollania N, Badoei-Dalfard A, Khajeh K (2010) Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. J Ind Microbiol Biotechnol 37(8):863–869CrossRefPubMedGoogle Scholar
  57. Molina-Guijarro JM, Pérez J, Muñoz-Dorado J, Guillén F, Moya R, Hernández M, Arias ME (2009) Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. Int Microbiol 12(1):13–21PubMedGoogle Scholar
  58. Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AL (2007) “Blue” laccases. Biochemistry (Mosc) 72(10):1136–1150.  https://doi.org/10.1134/S0006297907100112 CrossRefGoogle Scholar
  59. Natale P, Brüser T, Driessen AJ (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms. Biochim Biophys Acta 1778(9):1735–1756CrossRefPubMedGoogle Scholar
  60. Ng IS, Zhang X, Zhang Y, Lu Y (2013) Molecular cloning and heterologous expression of laccase from Aeromonas hydrophila NIU01 in Escherichia coli with parameters optimization in production. Appl Biochem Biotechnol 169(7):2223–2235.  https://doi.org/10.1007/s12010-013-0128-z CrossRefPubMedGoogle Scholar
  61. Niladevi KN, Prema P (2008) Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresour Technol 99(11):4583–4589.  https://doi.org/10.1016/j.biortech.2007.06.056 CrossRefPubMedGoogle Scholar
  62. Ohnishi F (1954) Tyrosinase in Drosophila virilis. Annot Zool Jpn 27:33–39Google Scholar
  63. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786.  https://doi.org/10.1038/nmeth.1701 CrossRefPubMedGoogle Scholar
  64. Pollegioni L, Fukui K, Massey V (1994) Studies on the kinetic mechanism of pig kidney d-amino acid oxidase by site-directed mutagenesis of tyrosine 224 and tyrosine 228. J Biol Chem 269(50):31666–31673PubMedGoogle Scholar
  65. Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282(7):1190–1213CrossRefPubMedGoogle Scholar
  66. Reiss R, Ihssen J, Thöny-Meyer L (2011) Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. BMC Biotechnol 11:9CrossRefPubMedPubMedCentralGoogle Scholar
  67. Reiss R, Ihssen J, Richter M, Eichorn E, Schilling B, Thöny-Meyer L (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One 8(6):e65633.  https://doi.org/10.1371/journal.pone.0065633 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Roberts SA, Wildner GF, Grass G, Weichsel A, Ambrus A, Rensing C, Montfort WR (2003) A labile regulatory copper ion lies near the T1 copper site in the multicopper oxidase CueO. J Biol Chem 278(34):31958–31963.  https://doi.org/10.1074/jbc.M302963200 CrossRefPubMedGoogle Scholar
  69. Rosini E, Molla G, Ghisla S, Pollegioni L (2011) On the reaction of d-amino acid oxidase with dioxygen: O2 diffusion pathways and enhancement of the reactivity. FEBS J 278(3):482–492.  https://doi.org/10.1111/j.1742-4658.2010.07969.x CrossRefPubMedGoogle Scholar
  70. Shao X, Gao Y, Jiang M, Li L (2009) Deletion and site-directed mutagenesis of laccase from Shigella dysenteriae results in enhanced enzymatic activity and thermostability. Enzym Microb Technol 44(5):274–280.  https://doi.org/10.1016/j.enzmictec.2008.12.013 CrossRefGoogle Scholar
  71. Sharma KK, Kuhad RC (2009) An evidence of laccases in archaea. Indian J Microbiol 49(2):142–150.  https://doi.org/10.1007/s12088-009-0039-4 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Silva CS, Durão P, Fillat A, Lindley PF, Martins LO, Bento I (2012) Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuni CGUG11284: characterization of a metallo-oxidase. Metallomics 4(1):37–47.  https://doi.org/10.1039/C1MT00156F CrossRefPubMedGoogle Scholar
  73. Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J (2011) The laccase engineering database: a classification and analysis system for laccase and related multicopper oxidases. Database (Oxford) 2011:bar006CrossRefGoogle Scholar
  74. Sondhi S, Sharma P, Saini S, Puri N, Gupta N (2014) Purification and characterization of an extracellular, thermos-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4. PLoS One 9(5):e96951CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sterjiades R, Dean JF, Eriksson KE (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol 99(3):1162–1168.  https://doi.org/10.1104/pp.99.3.1162 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Suzuki T, Endo K, Ito M, Tsujibo H, Miyamoto K, Inamori Y (2003) A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem 67(10):2167–2175.  https://doi.org/10.1271/bbb.67.2167 CrossRefPubMedGoogle Scholar
  77. Telke AA, Ghodake GS, Kalyani DC, Dhance RS, Govindwar SP (2011) Biochemical characteristics of a textile dye degrading extracellular laccase from a Bacillus sp. ADR. Bioresour Technol 102(2):1752–1756.  https://doi.org/10.1016/j.biortech.2010.08.086 CrossRefPubMedGoogle Scholar
  78. Tonin F, Rosini E, Piubelli L, Sanchez-Amat A, Pollegioni L (2016a) Different recombinant forms of polyphenol oxidase A, a laccase from Marinomonas mediterranea. Protein Expr Purif 123:60–69CrossRefPubMedGoogle Scholar
  79. Tonin F, Melis R, Cordes A, Sanchez-Amat A, Pollegioni L, Rosini E (2016b) Comparison of different microbial laccases as tools for industrial uses. New Biotechnol 33(3):387–398.  https://doi.org/10.1016/j.nbt.2016.01.007 CrossRefGoogle Scholar
  80. Wang CL, Zhao M, Li DB, Cui DZ, Lu L, Wei XD (2010) Isolation and characterization of a novel Bacillus subtilis WD23 exhibiting laccase activity from forest soil. Afr J Biotechnol 9(34):5496–5502Google Scholar
  81. Wang KF, Hu JH, Guo C, Liu CZ (2016) Scale-up laccase production from Trametes versicolor stimulated by vanillic acid. Bioprocess Biosyst Eng 39(7):1041–1049.  https://doi.org/10.1007/s00449-016-1582-0 CrossRefPubMedGoogle Scholar
  82. Yang SS, Liu ZW, Yi XP, Zhang AL, Zhang TY, Luo JX, Zhang ZH, Shen JC, Yin HX, Chen LP (2012) Isolation of laccase gene from Bacillus subtilis and analysis of its physicochemical properties. Gene 491(1):49–52.  https://doi.org/10.1016/j.gene.2011.09.006 CrossRefPubMedGoogle Scholar
  83. Yatsu J, Asano T (2009) Cuticle laccase of the silkworm, Bombyx mori: purification, gene identification and presence of its inactive precursor in the cuticle. Insect Biochem Mol Biol 39(4):254–262.  https://doi.org/10.1016/j.ibmb.2008.12.005 CrossRefPubMedGoogle Scholar
  84. Ye M, Li G, Liang WQ, Liu YH (2010) Molecular cloning and characterization of a novel metagenome-derived multicopper oxidase with alkaline laccase activity and highly soluble expression. Appl Microbiol Biotechnol 87(3):1023–1031.  https://doi.org/10.1007/s00253-010-2507-5 CrossRefPubMedGoogle Scholar
  85. Youn HD, Kim KJ, Maeng JS, Han YH, Jeong IB, Jeong G, Kang SO, Hah YC (1995) Single electron transfer by an extracellular laccase from the white-rot fungus Pleurotus ostreatus. Microbiology 141(Pt2):393–398.  https://doi.org/10.1099/13500872-141-2-393 CrossRefPubMedGoogle Scholar
  86. Zhang C, Diao H, Lu F, Bie X, Wang Y, Lu Z (2012) Degradation of triphenylmethane dyes using a temperature and pH stable spore laccase from a novel strain of Bacillus vallismortis. Bioresour Technol 126:80–86.  https://doi.org/10.1016/j.biortech.2012.09.055 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
  2. 2.‘The Protein Factory Research Center’Politecnico di Milano and University of InsubriaMilanItaly
  3. 3.Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Department of Bio-engineering SciencesVrije Universiteit BrusselBrusselBelgium
  5. 5.Genialis d.o.oLjubljanaSlovenia
  6. 6.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations