Applied Microbiology and Biotechnology

, Volume 102, Issue 5, pp 2235–2249 | Cite as

Toxoplasma gondii antigen SAG2A differentially modulates IL-1β expression in resistant and susceptible murine peritoneal cells

  • Jamilly Azevedo Leal-Sena
  • Jane Lima dos Santos
  • Thaise Anne Rocha dos Santos
  • Edson Mário de Andrade
  • Tiago Antônio de Oliveira Mendes
  • Juliano Oliveira Santana
  • Tiago Wilson Patriarca Mineo
  • José Roberto Mineo
  • Jair Pereira da Cunha-Júnior
  • Carlos Priminho Pirovani
Genomics, transcriptomics, proteomics


The cell surface of Toxoplasma gondii is covered by antigens (SAGs) from the SRS family anchored by glycosylphosphatidylinositol (GPI) and includes antigens from the SAG2 family. Among these, the SAG2A surface antigen shows great potential in activating humoral responses and has been used in characterizing the acute phase of infection and in the serological diagnosis of toxoplasmosis. In this study, we aimed to evaluate rSAG2A-induced proteins in BALB/c and C57BL/c mice macrophages and to evaluate the phenotypic polarization induced in the process. We treated the peritoneal macrophages from mouse strains that were resistant or susceptible to T. gondii with rSAG2A to analyze their proteomic profile by mass spectrometry and systems biology. We also examined the gene expression of these cells by RT-qPCR using the phenotypic markers of M1 and M2 macrophages. Differences were observed in the expression of proteins involved in the inflammatory process in both resistant and susceptible cells, and macrophages were preferentially induced to obtain a pro-inflammatory immune response (M1) via the overexpression of IL-1β in mice susceptible to this parasite. These data suggest that the SAG2A antigen induces phenotypic and classical activation of macrophages in both resistant and susceptible strains of mice during the acute phase of the disease.


Toxoplasmosis SAG2A Macrophage polarization Pro-inflammatory immune response 


Author contributions

Conceived and designed the experiments: JLS, JALS, and CPP. Performed the experiments: JALS, JLS, and TARS. Analyzed the data: JALS, JLS, TAOM, CPP, TWPM, JRM, and JPCJ. Contributed reagents/material/analysis tools: CPP, JLS, EMA, and TM. Wrote the paper: JALS, JLS, and CPP. All the authors read and approved the final version of the manuscript.

Compliance with ethical standards

The animals were bred and obtained from the Central Biotherium of the Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil, and all the animals were maintained under standard conditions according to the institutional guide to animal ethics approved by the Animal Ethics Committee of the State University of Santa Cruz (protocol number 04/2011).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2018_8759_MOESM1_ESM.pdf (789 kb)
ESM 1 (PDF 788 kb)
253_2018_8759_MOESM2_ESM.xlsx (62 kb)
ESM 2 (XLSX 62 kb)


  1. Alvarez MM, Liu JC, Santiago GT, Cha BH, Vishwakarma A, Ghaemmaghami A, Khademhosseini A (2000) Delivery strategies to control inflammatory response: modulating M1-M2 polarization in tissue engineering applications. J Control Release 240:349–363CrossRefGoogle Scholar
  2. Barrera SL, Fink S, Minnucci F, Valdez R, Balina LM (1995) Lack of cytotoxic activity against Mycobacterium leprae 65-kD heat shock protein (hsp) in multibacillary leprosy patients. Clin Exp Immunot 99:90–97CrossRefGoogle Scholar
  3. Béla SR, Silva DAO, Cunha-Junior JP, Pirovani CP, Chaves-Borges FA, Carvalho FR, Oliveira TC, Mineo JR (2008) Use of SAG2A recombinant Toxoplasma gondii surface antigen as a diagnostic marker for human acute toxoplasmosis: analysis of titers and avidity of IgG and IgG1 antibodies. Diagn Microbiol Infect Dis 62(3):245–254. CrossRefPubMedGoogle Scholar
  4. Benevides M, Cardoso CR, Milanezi CM, Castro-Filice LS, Barenco PVC, Sousa RO, Rodrigues RM, Mineo JR, Silva JS, Silva NM (2013) Toxoplasma gondii soluble tachyzoite antigen triggers protective mechanisms against fatal intestinal pathology in oral infection of C57BL/6 mice. PLoS One 8(9):e75138. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72(1-2):248–254. CrossRefPubMedGoogle Scholar
  6. Brunet LR (2001) Nitric oxide in parasitic infections. Int Immunopharmacol 1(8):1457–1467. CrossRefPubMedGoogle Scholar
  7. Capasso M (2014) Regulation of immune responses by proton channels. Immunology 143(2):131–137. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carrera L, Chiaramonte M, Kuhn R, Muller W, Sacks D, Sher A, Gazzinelli RT (1994) Leishmania major and Toxoplasma gondii have opposite effects on cytokine synthesis by macrophages. Mem Inst Oswaldo Cruz 89(4):649–651CrossRefPubMedGoogle Scholar
  9. Chaudhuri S, Vyas K, Kapasi P, Komar AA, Dinman JD, Barik S, Mazumder B (2007) Human ribosomal protein L13a is dispensable for canonical ribosome function but indispensable for efficient rRNA methylation. RNA 13(12):2224–2237. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Clayton C (2002) Life without transcriptional control? From fly to man and back again. EMBO J 21(8):1881–1888. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Coutinho LB, Gomes AO, Araújo EC, Barenco PV, Santos JL, Caixeta DR, Silva DA, Cunha-Júnior JP, Ferro EA, Silva NM (2012) The impaired pregnancy outcome in murine congenital toxoplasmosis is associated with a pro-inflammatory immune response, but not correlated with decidual inducible nitric oxide synthase expression. Int J Parasitol 42(4):341–352. CrossRefPubMedGoogle Scholar
  12. Cunha-Junior JP, Silva DAO, Silva NM, Souza MA, Souza GRL, Prudencio CR, Pirovani CP, Cascardo JCM, Barbosa BF, Goulart LR, Mineo JR (2010) A4D12 monoclonal antibody recognizes a new linear epitope from SAG2A Toxoplasma gondii tachyzoites, identified by phage display bioselection. Immunobiology 215(1):26–37. CrossRefPubMedGoogle Scholar
  13. de Bruyn M, Wiersma VR, Helfrich W, Eggleton P, Bremer E (2015) The ever-expanding immunomodulatory role of calreticulin in cancer immunity. Front Oncol 5(35).
  14. Denkers EY (1999) T lymphocyte-dependent effector mechanisms of immunity to Toxoplasma gondii. Microbes Infect 1(9):699–708. CrossRefPubMedGoogle Scholar
  15. Deponte M, Rahlfs S, Becker K (2007) Peroxiredoxin systems of protozoal parasites. Subcell Biochem 44:219–229CrossRefPubMedGoogle Scholar
  16. Donelly S, Stack CM, O’Neill SM, Sayed AA, Williams DL, Dalton JP (2008) Helminth 2-Cys peroxiredoxin drives Th2 response through a mechanism involving alternatively activated macrophages. FASEB J 22(11):4022–4032. CrossRefGoogle Scholar
  17. Dunay IR, Damatta RA, Fux B, Presti R, Greco S, Colonna M, Sibley LD (2008) Gr1(+) inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity 29(2):306–317. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dziadek B, Dzitko K, Dlugonska H (2005) Toxoplasma gondii binds human lactoferrin but not transferrin. Exp Parasitol 110:165–167CrossRefPubMedGoogle Scholar
  19. Dziegielewska KM, Andersen NA, Saunders NR (1998) Modification of macrophage response to lipopolysaccharide by fetuin. Immunol Lett 60(1):31–35. CrossRefPubMedGoogle Scholar
  20. Dzitko K, Grzybowski MM, Pawełczyk J, Dziadek B, Gatkowska J, Stączek P, Długońska H (2015) Phytoecdysteroids as modulator of the Toxoplasma gondii growth rate in human and mouse cells. Parasit Vectors 8(422).
  21. Eguchi J, Kong X, Tenta M, Wang X, Kang S, Rosen ED (2013) Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization. Diabetes 62(10):3394–3403. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Furuta T, Imajo-Ohmi S, Fukuda H, Kano S, Miyake K, Watanabe N (2008) Mast cell-mediated immune responses through IgE antibody and toll-like receptor 4 by malarial peroxiredoxin. Eur J Immunol 38(5):1341–1350. CrossRefPubMedGoogle Scholar
  23. Gazzinelli RT, Hakim FT, Hieny S, Shearer GM, Sher A (1991) Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. J Immunol 146:286–292PubMedGoogle Scholar
  24. Gazzinelli RT, Brézin A, Li Q, Nussenblatt RB, Chan C-C (1994) Toxoplasma gondii: acquired ocular toxoplasmosis in the murine model, protective role, of TNF-a and IFN-y. Exp Parasitol 78(2):217–229. CrossRefPubMedGoogle Scholar
  25. Haddad G, Belosevic M (2009) Transferrin-derived synthetic peptides induces highly conserved pro-inflamatory responses of macrophages. Mol Immunol 46(4):576–586. CrossRefPubMedGoogle Scholar
  26. Hohenhaus DM, Schaale K, Le Cao K-A, Seow V, Iyer A, Fairlie DP, Sweet MJ (2013) An mRNA atlas of G-protein coupled receptor expression during primary human monocyte/ macrophage differentiation and lipopolysacharide-mediated activation identifies targetable candidate regulators of inflammation. Immunobiology 218(11):1345–1353. CrossRefPubMedGoogle Scholar
  27. Hori H (2014) Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 5(144).
  28. Johnson EE, Sandgren A, Cherayil BJ, Murray M, Wessling-Resnick M (2010) Role of ferroportin in macrophage-mediated immunity. Infect Immun 78:5099–5106CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jung C, Lee Y-F, Grigg M (2004) The SRS superfamily of Toxoplasma surface proteins. Int J Parasitol 34(3):285–296. CrossRefPubMedGoogle Scholar
  30. Kong L, Zhang Q, Chao J, Wen H, Zhang Y, Chen H, Pappoe F, Zhang A, Xu X, Cai Y, Li M, Luo Q, Zhang L, Shen J (2015) Polarization of macrophages induced by Toxoplasma gondii and its impact on abnormal pregnancy in rats. Acta Trop 143:1–7. CrossRefPubMedGoogle Scholar
  31. Lekutis C, Ferguson DJP, Grigg ME, Camps M, Boothroyd JC (2001) Surface antigens of Toxoplasma gondii: variations on a theme. Int J Parasitol 31(12):1285–1292. CrossRefPubMedGoogle Scholar
  32. Leng J, Butcher BA, Denkers EY (2009) Dysregulation of macrophage signal transduction by Toxoplasma gondii: past progress and recent advances. Parasite Immunol 31(12):717–728. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liesenfeld O, Kosek J, Remington JS, Suzuki Y (1996) Association of CD4+ T cell-dependent, interferon-y-mediated necrosis of the small intestine with genetic susceptibility of mice to peroral infection with Toxoplasma gondii. J Exp Med 184(2):597–607. CrossRefPubMedGoogle Scholar
  34. Liu Q, Wang Z-D, Huang S-Y, Zhu X-Q (2015) Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasit Vectors 8(1):292. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T method. Methods 25(4):402–408. CrossRefPubMedGoogle Scholar
  36. Macêdo-Junior AG, Cunha Junior JP, Cardoso THS, Silva MV, Santiago FM, Silva JS, Pirovani CP, Silva DAO, Mineo JR, Mineo TWP (2013) SAG2A protein from Toxoplasma gondii interacts with both innate and adapttive immune compartments of infected hosts. Parasit Vectors 6(1):163. CrossRefGoogle Scholar
  37. Marshall ES, Elshekiha HM, Hakimi MA, Flynn RJ (2011) Toxoplasma gondii peroxiredoxin promotes altered macrophage function, caspase-1-dependent IL-1b secretion enhances parasite replication. Vet Res 42(1):80. CrossRefPubMedPubMedCentralGoogle Scholar
  38. McLeod R, Eisenhauer P, Mack D, Brown C, Filice G, Spitalnt G (1989) Immune responses associated with early survival after peroral infection with Toxoplasma gondii. J Immunol 142(9):3247–3255PubMedGoogle Scholar
  39. Memoli B, Bartolo L, Favia P, Morelli S, Lopez L, Procino A, Barbieri G, Curcio E, Giorno L, Esposito P, Cozzolino M, Brancaccio D, Andreucci VE, d’Agostino R, Drioli E (2007) Fetuin-a gene expression, synthesis and release in primary human hepatocytes cultured in a galactosylated membrane bioreactor. Biomaterials 28:4836–4844CrossRefPubMedGoogle Scholar
  40. Miletić T, Kovacević-Jovanović V, Vujić V, Stanojević S, Mitić K, Lazarević-Macanović M, Dimitrijević M (2007) Reactive oxygen species (ROS), but not nitric oxide (NO), contribute to strain differences in the susceptibility to experimental arthritis in rats. Immunobiology 212(2):95–105CrossRefPubMedGoogle Scholar
  41. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and citotoxicity assays. J Immunol Methods 65(1-2):55–63. CrossRefPubMedGoogle Scholar
  42. Mun HS, Aosai F, Fang H, Piao LX, Winn T, Norose K, Yano A (2005) A novel B-2 suppressor cell regulating susceptibility/resistance of mice to Toxoplasma gondii infection. Microbiol Immunol 49(9):853–858. CrossRefPubMedGoogle Scholar
  43. Neuhoff V, Arold N, Taube DE, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using coomassie brilliant blue G-250 and R-250. Eletrophoresis 9(6):255–262. CrossRefGoogle Scholar
  44. Oliveira RAS, Correia-Oliveira J, Tang L-J, Garcia RC (2012) A proteomic insight into the effects of the immunomodulatory hydroxynaphthoquinone lapachol on activated macrophages. Int Immunopharmacol 14(1):54–65. CrossRefPubMedGoogle Scholar
  45. Ombrellino M, Wang H, Yang H, Zhang M, Vishnubhakat J, Frazier A, Scher LA, Friedman SG, Tracey KJ (2001) Fetuin, a negative acute phase protein, attenuates TNF synthesis and the innate inflammatory response to carrageenan. Shock 15(3):181–185. CrossRefPubMedGoogle Scholar
  46. Ong ST, Ho JZS, Ding JL (2006) Iron withholding strategy in innate immunity. Immunobiology 211(4):295–314. CrossRefPubMedGoogle Scholar
  47. Patial S, Shahi S, Saini Y, Lee T, Packiriswamy N (2014) G-protein coupled receptor kinase 5 mediates lipopolysaccharide-induced NFkB activation in primary macrophages and modulates inflammation in vivo in mice. J Cell Physiol 226:1323–1333CrossRefGoogle Scholar
  48. Patil V, Zhao Y, Shah S, Fox BA, Rommereim LM, Yap GS (2014) Co-existence of classical and alternative activation programs in macrophages responding to Toxoplasma gondii. Int J Parasitol 44(2):161–164. CrossRefPubMedGoogle Scholar
  49. Peters LR, Raghavan M (2011) Endoplasmic reticulum calcium depletion impacts chaperone secretion, innate immunity, and phagocytic uptake of cells. J Immunol 187(2):919–931. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Prince JB, Auer KL, Huskinson J, Parmley SF, Araujo FG, Remington JS (1990) Cloning, expression, and cDNA sequence of surface antigen P22 from Toxoplasma gondii. Mol Biochem Parasitol 43(1):97–106. CrossRefPubMedGoogle Scholar
  51. Reynolds JM, Angkasekwinai P, Dong C (2010) IL-17 family member cytokines: regulation and function in innate immunity. Cytokine Growth Factor Rev 21(6):413–423. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Saadoun D, Terrier B, Cacoub P (2011) Interleukin-25: key regulator of inflammatory and autoimmune diseases. Curr Pharm Des 34:3781–3785CrossRefGoogle Scholar
  53. Santana SS, Silva DAO, Vaz LD, Pirovani CP, Barros GB, Lemos EM, Dietze R, Mineo JR, Cunha-Junior JP (2012) Analysis of IgG subclasses (IgG1 and IgG3) to recombinant SAG2A protein from Toxoplasma gondii in sequential serum sample from patients with toxoplasmosis. Immunol Lett 143(2):193–201. CrossRefPubMedGoogle Scholar
  54. Santos JL, Andrade AA, Dias AA, Bonjardim CA, Reis LF, Teixeira SM, Horta MF (2006) Differential sensitivity of C57BL/6 (M-1) and BALB/c (M-2) macrophages to the stimuli of IFN-/LPS for the production of NO: correlation with iNOS mRNA and protein expression. J Interf Cytokine Res 26(9):682–688. CrossRefGoogle Scholar
  55. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann I (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860. CrossRefPubMedGoogle Scholar
  56. Taboy CH, Kaughan KG, Mietzner TA, Aisen P, Crumbliss AL (2001) Fe3+ coordination and redox properties of a bacterial transferrin. J Biol Chem 276(4):2719–2724. CrossRefPubMedGoogle Scholar
  57. Tatano Y, Shimizu T, Tomioka H (2015) Unique macrophages different from M1/M2 macrophages inhibit T cell mitogenesis while upregulating Th17 polarization. Sci Rep 4:4146CrossRefGoogle Scholar
  58. Tenter AM, Heckeroth AR, Weiss LR (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30(12-13):1217–1258. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tsan MF, Gao B (2004) Endogenous ligands of toll-like receptors. J Leukoc Biol 76(3):514–519. CrossRefPubMedGoogle Scholar
  60. Villela-Dias C, Camillo LR, de Oliveira GA, Sena JA, Santiago AS, de Sousa ST, Mendes JS, Pirovani CP, Alvim FC, Costa MG (2014) Nep1-like protein from Moniliophthora perniciosa induces a rapid proteome and metabolome reprogramming in cells of Nicotiana benthamiana. Physiol Plant 150(1):1–17. CrossRefPubMedGoogle Scholar
  61. Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggreen HG (2002) Heat-shock proteins as activaction of innate immune system. Trends Immunol 23(3):130–135. CrossRefPubMedGoogle Scholar
  62. Wang Y, Yin H (2015) Research advances in microneme protein 3 of Toxoplasma gondii. Parasit Vectors 8(1):384. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Welch JS, Escoubet-Louzach L, Sykes DB, Liddiard K, Greaves DR, Glass CK (2002) Th2 cytokines and allergic challenger induces Ym1 expression in macrophages by a STAT6-dependent mechanism. J Biol Chem 277(45):42821–42829. CrossRefPubMedGoogle Scholar
  64. Yao C, Karabasil MR, Purwanti N, Li X, Akamatsu T, Kanamori N, Hosoi K (2006) Tissue kallikrein mK13 is a candidate processing enzyme for the precursor of interleukin-1beta in the submandibular gland of mice. J Biol Chem 281(12):7968–7976. CrossRefPubMedGoogle Scholar
  65. Zhang L, Zhu H, Lun Y, Yan D, Yu L, Du B, Zhu X (2007) Proteomic analysis of macrophages: a potential way to identify novel proteins associated with activation of macrophages for tumor cell killing. Cell Mol Immunol 4(5):359–367PubMedGoogle Scholar
  66. Zhang A-M, Shen Q, Li M, Xu X-C, Chen H, Cai Y-H, Luo Q-L, Chu D-Y, Yu L, Du J, Lun Z-R, Wang Y, Sha Q, Shen J-L (2013) Comparative studies of macrophage-biased responses in mice to infection with Toxoplasma gondii ToxoDB #9 strains of different virulence isolated from China. Parasit Vectors 6(1):308. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhang Q, He L, Kong L, Zhang Y, Chen H, An R, Wang L, Wang W, Xu X, Zhang A, Cai Y, Li M, Wen H, Luo Q, Shen J (2015) Genotype-associated arginase 1 expression in rat peritoneal macrophages induced by Toxoplasma gondii. J Parasitol 101(4):418–423. CrossRefPubMedGoogle Scholar
  68. Zhou DH, Yuan ZG, Zhao FR, Li HL, Zhou Y, Lin RQ, Zou FC, Song HQ, Xu MJ, Zhu XQ (2011) Modulation of mouse macrophage proteome induced by Toxoplasma gondii tachyzoites in vivo. Parasitol Res 109(6):1637–1646. CrossRefPubMedGoogle Scholar
  69. Zhou DH, Zhao FR, Huang SY, Xu MJ, Song HQ, Su C, Zhu XQ (2013) Changes in the proteomic profiles of mouse brain after infection with cyst-forming Toxoplasma gondii. Parasit Vectors 6(1):96. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhou DH, Zhao FR, Nisbet AJ, Xu MJ, Song HQ, Lin RQ, Huang SY, Zhu XQ (2014) Comparative proteomic analysis of different Toxoplasma gondii genotypes by two-dimensional fluorescence difference gel electrophoresis combined with mass spectrometry. Electrophoresis 35(4):533–545. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jamilly Azevedo Leal-Sena
    • 1
  • Jane Lima dos Santos
    • 1
  • Thaise Anne Rocha dos Santos
    • 1
  • Edson Mário de Andrade
    • 1
  • Tiago Antônio de Oliveira Mendes
    • 2
  • Juliano Oliveira Santana
    • 1
  • Tiago Wilson Patriarca Mineo
    • 3
  • José Roberto Mineo
    • 3
  • Jair Pereira da Cunha-Júnior
    • 3
  • Carlos Priminho Pirovani
    • 1
  1. 1.Biothecnology and Genetic CenterState University of Santa CruzIlhéusBrazil
  2. 2.Federal University of ViçosaViçosaBrazil
  3. 3.Federal University of UberlândiaUberlândiaBrazil

Personalised recommendations