Applied Microbiology and Biotechnology

, Volume 102, Issue 5, pp 2279–2288 | Cite as

Cold atmospheric pressure plasma causes protein denaturation and endoplasmic reticulum stress in Saccharomyces cerevisiae

  • Koki Itooka
  • Kazuo Takahashi
  • Yukio Kimata
  • Shingo Izawa
Applied microbial and cell physiology


Cold atmospheric pressure plasma (CAP) does not cause thermal damage or generate toxic residues; hence, it is projected as an alternative agent for sterilization in food and pharmaceutical industries. The fungicidal effects of CAP have not yet been investigated as extensively as its bactericidal effects. We herein examined the effects of CAP on yeast proteins using a new CAP system with an improved processing capacity. We demonstrated that protein ubiquitination and the formation of protein aggregates were induced in the cytoplasm of yeast cells by the CAP treatment. GFP-tagged Tsa1 and Ssa1, an H2O2-responsive molecular chaperone and constitutively expressed Hsp70, respectively, formed cytoplasmic foci in CAP-treated cells. Furthermore, Tsa1 was essential for the formation of Ssa1-GFP foci. These results indicate that the denaturation of yeast proteins was caused by CAP, at least partially, in a H2O2-dependent manner. Furthermore, misfolded protein levels in the endoplasmic reticulum (ER) and the oligomerization of Ire1, a key sensor of ER stress, were enhanced by the treatment with CAP, indicating that CAP causes ER stress in yeast cells as a specific phenomenon to eukaryotic cells. The pretreatment of yeast cells at 37 °C significantly alleviated cell death caused by CAP. Our results strongly suggest that the induction of protein denaturation is a primary mechanism of the fungicidal effects of CAP.


Cold atmospheric pressure plasma Fungicidal efficacy Sterilization Endoplasmic reticulum stress Protein denaturation Saccharomyces cerevisiae 



We are grateful to N. Kawazoe for her constructive advice.

Funding information

This study was supported by the Japan Society for the Promotion of Science [grant number 26292039] and the Kyoto Lifetech Innovation Support Center.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3(1):2. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amm I, Sommer T, Wolf DH (2014) Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta 1843(1):182–196. CrossRefPubMedGoogle Scholar
  3. Bösl B, Grimminger V, Walter S (2006) The molecular chaperone Hsp104—a molecular machine for protein disaggregation. J Struct Biol 156(1):139–148. CrossRefPubMedGoogle Scholar
  4. Brodsky JL, Skach WR (2011) Protein folding and quality control in the endoplasmic reticulum: recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol 23(4):464–475. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Canullo L, Genova T, Tallarico M, Gautier G, Mussano F, Botticelli D (2016) Plasma of argon affects the earliest biological response of different implant surfaces: an in vitro comparative study. J Dent Res 95(5):566–573. CrossRefPubMedGoogle Scholar
  6. Chapman RE, Walter P (1997) Translational attenuation mediated by an mRNA intron. Curr Biol 7(11):850–859. CrossRefPubMedGoogle Scholar
  7. Collins GA, Gomez TA, Deshaies RJ, Tansey WP (2010) Combined chemical and genetic approach to inhibit proteolysis by the proteasome. Yeast 27(11):965–974. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Costa V, Moradas-Ferreira P (2001) Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Asp Med 22(4-5):217–246. CrossRefGoogle Scholar
  9. Duske K, Koban I, Kindel E, Schröder K, Nebe B, Holtfreter B, Jablonowski L, Weltmann KD, Kocher T (2012) Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J Clin Periodontol 39(4):400–407. CrossRefPubMedGoogle Scholar
  10. Escusa-Toret S, Vonk WIM, Frydman J (2013) Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress. Nat Cell Biol 15(10):1231–1344. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Feng H, Wang R, Sun P, Wu H, Liu Q, Fang J, Zhu W, Li F, Zhang J (2010) A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using Saccharomyces cerevisiae single gene mutants. Appl Phys Lett 97(13):131501–131503. CrossRefGoogle Scholar
  12. Fernández A, Noriega E, Thompson A (2013) Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol 33:24–29CrossRefPubMedGoogle Scholar
  13. Finley D, Ulrich HD, Sommer T, Kaiser P (2012) The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192(2):319–360. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Garrido EO, Grant CM (2002) Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Mol Microbiol 43(4):993–1003. CrossRefPubMedGoogle Scholar
  15. Gaunt L, Beggs C, Georghiou G (2006) Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Trans Plasma Sci 34(4):1257–1269. CrossRefGoogle Scholar
  16. Gibney PA, Lu C, Caudy AA, Hess DC, Botstein D (2013) Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes. Proc Natl Acad Sci U S A 110(46):E4393–E4402. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Giro G, Tovar N, Witek L, Marin C, Silva NRF, Bonfante EA, Coelho PG (2013) Osseointegration assessment of chairside argon-based nonthermal plasma-treated Ca-P coated dental implants. J Biomed Mater Res A 101(1):98–103. CrossRefPubMedGoogle Scholar
  18. Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94(1):73–82. CrossRefPubMedGoogle Scholar
  19. Hanzén S, Vielfort K, Yang J, Roger F, Andersson V, Zamarbide-Forés S, Andersson R, Malm L, Palais G, Biteau B, Liu B, Toledano MB, Molin M, Nyström T (2016) Lifespan control by redox-dependent recruitment of chaperones to misfolded proteins. Cell 166(1):140–151. CrossRefPubMedGoogle Scholar
  20. Heinlin J, Morfill G, Landthaler M, Stolz W, Isbary G, Zimmermann JL, Shimizu T, Karrer S (2010) Plasma medicine: possible applications in dermatology. J Dtsch Dermatol Ges 8(12):968–976. PubMedGoogle Scholar
  21. Heise M, Neff W, Franken O, Muranyi P, Wunderlich J (2004) Sterilization of polymer foils with dielectric barrier discharges at atmospheric pressure. Plasmas Polym 9(1):23–33. CrossRefGoogle Scholar
  22. Hill SM, Hanzén S, Nyström T (2017) Restricted access: spatial sequestration of damaged proteins during stress and aging. EMBO Rep 18:377–391CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hoffmann C, Berganza C, Zhang J (2013) Cold atmospheric plasma, methods of production and application in dentistry and oncology. Med Gas Res 3(1):21. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Homma T, Furuta M, Takemura Y (2013) Inactivation of Escherichia coli using the atmospheric pressure plasma jet of Ar gas. Jpn J Appl Phys 52(3R):036201. CrossRefGoogle Scholar
  25. Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T (2003) UV-induced skin damage. Toxicology 189(1-2):21–39. CrossRefPubMedGoogle Scholar
  26. Itooka K, Takahashi K, Izawa S (2016) Fluorescence microscopic analysis of antifungal effects of cold atmospheric pressure plasma in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100:9295–9304CrossRefPubMedGoogle Scholar
  27. Izawa S, Takemura R, Inoue Y (2004) Gle2p is essential to induce adaptation of the export of bulk poly(A) mRNA to heat shock in Saccharomyces cerevisiae. J Biol Chem 279:35469–35478CrossRefPubMedGoogle Scholar
  28. Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW, Choi YO, Kim WY, Kang JS, Cheong GW, Yun DJ, Rhee SG, Cho MJ, Lee SY (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117(5):625–635. CrossRefPubMedGoogle Scholar
  29. Kawahara T, Yanagi H, Yura T, Mori K (1997) Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Mol Biol Cell 8(10):1845–1862. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kawazoe N, Kimata Y, Izawa S (2017) Acetic acid causes endoplasmic reticulum stress and induces the unfolded protein response in Saccharomyces cerevisiae. Front Microbiol 8:1192. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82(1):323–355. CrossRefPubMedGoogle Scholar
  32. Kimata Y, Kimata I, Shimizu Y, Abe H, Farcasanu IC, Takeuchi M, Rose MD, Kohno K (2003) Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins. Mol Biol Cell 14(6):2559–2569. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kimata Y, Oikawa D, Shimizu Y, Ishiwata-Kimata Y, Kohno K (2004) A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J Cell Biol 167:445–456CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kimata Y, Ishiwata-Kimata Y, Ito T, Hirata A, Suzuki T, Oikawa D, Takeuchi M, Kohno K (2007) Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J Cell Biol 179(1):75–86. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Klämfl TG, Isbary G, Shimizu T, Li YF, Zimmermann JL, Stolz W, Schlegel J, Morfill GE, Schmidt HU (2012) Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol 78(15):5077–5082. CrossRefGoogle Scholar
  36. Koban I, Matthes R, Hübner NO, Welk A, Meisel P, Holtfreter B, Sietmann R, Kindel E, Weltmann K, Kramer A, Kocher T (2010) Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet. New J Phys 12:1–15CrossRefGoogle Scholar
  37. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J, Zimmermann JL (2009) Plasma medicine: an introductory review. New J Phys 11(11):115012. CrossRefGoogle Scholar
  38. Koplin A, Preissler S, Ilina Y, Koch M, Scior A, Erhardt M, Deuerling E (2010) A dual function for chaperones SSB-RAC and the NAC nascent polypeptide associated complex on ribosomes. J Cell Biol 189:57–68CrossRefPubMedPubMedCentralGoogle Scholar
  39. Krisch J, Chandrasekaran M, Kadaikunnan S, Alharbi NS, Vágvölgyi C (2016) Latest about spoilage by yeasts: focus on the deterioration of beverages and other plant-derived products. J Food Prot 79(5):825–829. CrossRefPubMedGoogle Scholar
  40. Lackmann JW, Bandow JE (2014) Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets. Appl Microbiol Biotechnol 98(14):6205–6213. CrossRefPubMedGoogle Scholar
  41. Lackmann J, Schneider S, Edengeiser E, Jarzina F, Brinckmann S, Steinborn E, Havenith M, Benedikt J, Bandow JE (2013) Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J R Soc Interface 10(89):2013059. CrossRefGoogle Scholar
  42. Liu B, Larsson L, Caballero A, Hao X, Oling D, Grantham J, Nyström T (2010) The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140:257–267CrossRefPubMedGoogle Scholar
  43. Loureiro V, Malfeito-Ferreira M (2003) Spoilage yeasts in the wine industry. Int J Food Microbiol 86(1-2):23–50. CrossRefPubMedGoogle Scholar
  44. Mackenzie RJ, Lawless C, Holman SW, Lanthaler K, Beynon RJ, Grant CM, Hubbard SJ, Eyers CE (2016) Absolute protein quantification of the yeast chaperome under conditions of heat shock. Proteomics 16(15-16):2128–2140. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Maeda K, Toyokawa Y, Shimizu N, Imanishi Y, Sakudo A (2015) Inactivation of Salmonella by nitrogen gas plasma generated by a static induction thyristor as a pulsed power supply. Food Control 52:54–59CrossRefGoogle Scholar
  46. Maisch T, Shimizu T, Li YF, Heinlin J, Karrer S, Morfill G, Zimmermann JL (2012a) Decolonisation of MRSA, S. aureus and E. coli by cold atmospheric plasma using a porcine skin model in vitro. PLoS One 7(4):e34610.
  47. Maisch T, Shimizu T, Isbary G, Heinlin J, Karrer S, Klämpfl TG, Lin YF, Morfill G, Zimmermann JL (2012b) Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma. Appl Environ Microbiol 78(12):4242–4247. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Manner H (2008) Argon plasma coagulation therapy. Curr Opin Gastroenterol 24(5):612–616. CrossRefPubMedGoogle Scholar
  49. Mathuranyanon R, Tsukamoto T, Takeuchi A, Ishiwata-Kimata Y, Tuchiya Y, Kohno K, Kimata Y (2015) Tight regulation of the unfolded protein sensor Ire1 by its intramolecularly antagonizing subdomain. J Cell Sci 128:1762–1772CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mir SA, Shah MA, Mir MM (2016) Understanding the role of plasma technology in food industry. Food Bioprocess Technol 9(5):734–750. CrossRefGoogle Scholar
  51. Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190(4):1157–1195. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mori K (2009) Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem 146(6):743–750. CrossRefPubMedGoogle Scholar
  53. Mori K, Kawahara T, Yoshida H, Yanagi H, Yura T (1996) Signaling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells 1:803–817CrossRefPubMedGoogle Scholar
  54. Niemira BA, Boyd G, Sites J (2014) Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms. J Food Sci 79:917–922CrossRefGoogle Scholar
  55. Park BJ, Lee DH, Park JC, Lee IS, Lee KY, Hyun SO, Chun MS, Chung KH (2003) Sterilization using a microwave-induced argon plasma system at atmospheric pressure. Phys Plasmas 10(11):4539–4544. CrossRefGoogle Scholar
  56. Pattison DI, Davies MJ (2006) Actions of ultraviolet light on cellular structures. EXS 96:131–157Google Scholar
  57. Pattison DI, Rahmanto AS, Davies MJ (2012) Photo-oxidation of proteins. Photochem Photobiol Sci 11(1):38–53. CrossRefPubMedGoogle Scholar
  58. Promlek T, Ishiwata-Kimata Y, Shido M, Sakuramoto M, Kohno K, Kimata Y (2011) Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol Biol Cell 22(18):3520–3532. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rand JD, Grant CM (2006) The thioredoxin system protects ribosomes against stress-induced aggregation. Mol Biol Cell 17(1):387–401. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rose MD, Misra LM, Vogel JP (1989) KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57(7):1211–1221. CrossRefPubMedGoogle Scholar
  61. Ryu Y, Kim Y, Lee J, Shim G, Uhm H, Park G, Choi EH (2013) Effects of background fluid on the efficiency of inactivating yeast with nonthermal atmospheric pressure plasma. PLoS One 8:e66231. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sanchez Y, Lindquist SL (1990) HSP104 required for induced thermotolerance. Science 248(4959):1112–1115. CrossRefPubMedGoogle Scholar
  63. Shaw A, Shama G, Iza F (2015) Emerging applications of low temperature gas plasmas in the food industry. Biointerphases 10:029402. CrossRefPubMedGoogle Scholar
  64. Sun S, Anderson NM, Keller S (2014) Atmospheric pressure plasma treatment of black peppercorns inoculated with Salmonella and held under controlled storage. J Food Sci 79(12):E2441–E2446. CrossRefPubMedGoogle Scholar
  65. Tanaka H, Hori M (2017) Medical applications of non-thermal atmospheric pressure plasma. J Clin Biochem Nutr 60(1):29–32. CrossRefPubMedGoogle Scholar
  66. Vabulas RM, Raycchaudhuri S, Hayer-Hartl M, Hartl FU (2010) Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb Perspect Biol 2(12):a004390. CrossRefPubMedPubMedCentralGoogle Scholar
  67. van Gils CAJ, Hofmann S, BKHL B, Brandenburg R, Bruggeman PJ (2013) Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. J Phys D Appl Phys 46:175203. CrossRefGoogle Scholar
  68. Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76(2):115–158. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wallace EWJ, Kear-Scott JL, Pilipenko EV, Schwartz MH, Laskowski PR, Rojek AE, Katanski CD, Riback JA, Dion MF, Franks AM, Airoldi EM, Pan T, Budnik BA, Drummond DA (2015) Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162(6):1286–1298. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Weids AJ, Ibstedt S, Tamás MJ, Grant CM (2016) Distinct stress conditions result in aggregation of proteins with similar properties. Sci Rep 18(1):24554. CrossRefGoogle Scholar
  71. Weltmann KD, von Woedtke T (2016) Plasma medicine—current state of research and medical application. Plasma Phys Control Fusion 59(1):014031. CrossRefGoogle Scholar
  72. Yasuda H, Hashimoto M, Rahman MM, Takashima K, Mizuno A (2008) States of biological components in bacteria and bacteriophages during inactivation by atmospheric dielectric barrier discharges. Plasma Process Polym 5:615–621CrossRefGoogle Scholar
  73. Zhou C, Slaughter BD, Unruh JR, Eldakak A, Rubinstein B, Li R (2011) Motility and segregation of Hsp104-associated protein aggregates in budding yeast. Cell 23:1186–1196CrossRefGoogle Scholar
  74. Ziuzina D, Patil S, Cullen PJ, Keener KM, Bourke P (2014) Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol 42:109–116. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Microbial Technology, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
  2. 2.Faculty of Electrical Engineering and ElectronicsKyoto Institute of TechnologyKyotoJapan
  3. 3.Graduate School of Biological SciencesNara Institute of Science and TechnologyNaraJapan

Personalised recommendations