Abrashev RI, Pashova SB, Stefanova LN, Vassilev SV, Dolashka-Angelova PA, Angelova MB (2008) Heat-shock-induced oxidative stress and antioxidant response in Aspergillus niger 26. Can J Microbiol 54:977–983. https://doi.org/10.1139/W08-091
Article
CAS
PubMed
Google Scholar
Apelblat A (2014) Citric acid. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-11233-6_1
Arts E, Kubicek CP, Röhr M (1987) Regulation of phosphofructokinase from Aspergillus niger: effect of fructose 2,6-bisphosphate on the action of citrate, ammonium ions and AMP. Microbiology 133:1195–1199. https://doi.org/10.1099/00221287-133-5-1195
Article
CAS
Google Scholar
Bafana R, Pandey RA (2018) New approaches for itaconic acid production: bottlenecks and possible remedies. Crit Rev Biotechnol 38:68–82. https://doi.org/10.1080/07388551.2017.1312268
Article
CAS
PubMed
Google Scholar
Bambouskova M, Gorvel L, Lampropoulou V, Sergushichev A, Loginicheva E, Johnson K, Korenfeld D, Mathyer ME, Kim H, Huang L-H, Duncan D, Bregman H, Keskin A, Santeford A, Apte RS, Sehgal R, Johnson B, Amarasinghe GK, Soares MP, Satoh T, Akira S, Hai T, de Guzman Strong C, Auclair K, Roddy TP, Biller SA, Jovanovic M, Klechevsky E, Stewart KM, Randolph GJ, Artyomov MN (2018) Electrophilic properties of itaconate and derivatives regulate the IκBζ–ATF3 inflammatory axis. Nature 556:501–504. https://doi.org/10.1038/s41586-018-0052-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Batti M, Schweiger LB (1963) Process for the production of itaconic acid. US Patent 3078217A
Bayram Ö, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24. https://doi.org/10.1111/j.1574-6976.2011.00285.x
Article
CAS
PubMed
Google Scholar
Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon N-J, Keller NP, Yu J-H, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506. https://doi.org/10.1126/science.1155888
Article
CAS
PubMed
Google Scholar
Bentley R, Thiessen CP (1957) Biosynthesis of itaconic acid in Aspergillus terreus. III. The properties and reaction mechanism of cis-aconitic acid decarboxylase. J Biol Chem 226:703–720
CAS
PubMed
Google Scholar
Blatzer M, Latgé JP (2017) Metal-homeostasis in the pathobiology of the opportunistic human fungal pathogen Aspergillus fumigatus. Curr Opin Microbiol 40:152–159
Article
CAS
PubMed
Google Scholar
Blumhoff ML, Steiger MG, Mattanovich D, Sauer M (2013) Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger. Metab Eng 19:26–32. https://doi.org/10.1016/j.ymben.2013.05.003
Article
CAS
PubMed
Google Scholar
Bonnarme P, Gillet B, Sepulchre AM, Role C, Beloeil JC, Ducrocq C (1995) Itaconate biosynthesis in Aspergillus terreus. J Bacteriol 177:3573–3578. https://doi.org/10.1128/jb.177.12.3573-3578.
Calam CT, Oxford AE, Raistrick H (1939) Studies in the biochemistry of micro-organisms: Itaconic acid, a metabolic product of a strain of Aspergillus terreus Thom. Biochem J 33:1488–1495. https://doi.org/10.1042/bj0331488
Article
CAS
PubMed
PubMed Central
Google Scholar
Canessa P, Larrondo LF (2013) Environmental responses and the control of iron homeostasis in fungal systems. Appl Microbiol Biotechnol 97:939–955. https://doi.org/10.1007/s00253-012-4615-x
Article
CAS
PubMed
Google Scholar
Capuder M, Šolar T, Benčina M, Legiša M (2009) Highly active, citrate inhibition resistant form of Aspergillus niger 6-phosphofructo-1-kinase encoded by a modified pfkA gene. J Biotechnol 144:51–57. https://doi.org/10.1016/j.jbiotec.2009.04.004
Article
CAS
PubMed
Google Scholar
Cavallo E, Charreau H, Cerrutti P, Foresti ML (2017) Yarrowia lipolytica: a model yeast for citric acid production. FEMS Yeast Res 17. https://doi.org/10.1093/femsyr/fox084
Chen Y, Nielsen J (2016) Biobased organic acids production by metabolically engineered microorganisms. Curr Opin Biotechnol 37:165–172. https://doi.org/10.1016/J.COPBIO.2015.11.004
Chen H, He X, Geng H, Liu H (2014) Physiological characterization of ATP-citrate lyase in Aspergillus niger. J Ind Microbiol Biotechnol 41:721–731. https://doi.org/10.1007/s10295-014-1418-3
Article
CAS
PubMed
Google Scholar
Clark DS (1962) Submerged citric acid fermentation of ferrocyanide-treated cane molasses. Biotechnol Bioeng 4:17–21
Article
CAS
Google Scholar
Cleland WW, Johnson MJ (1954) Tracer experiments on the mechanism of citric acid formation by Aspergillus niger. J Biol Chem 208:679–689
CAS
PubMed
Google Scholar
Cox PW, Paul GC, Thomas CR (1998) Image analysis of the morphology of filamentous micro-organisms. Microbiology 144:817–827. https://doi.org/10.1099/00221287-144-4-817
Article
CAS
PubMed
Google Scholar
Currie JN (1917) The citric acid fermentation of Aspergillus niger. J Biol Chem 31:15–37. https://doi.org/10.1200/jco.1993.11.8.1573
CAS
Article
Google Scholar
Dai Z, Mao X, Magnuson JK, Lasure LL (2004) Identification of genes associated with morphology in Aspergillus niger by using suppression subtractive hybridization. Appl Environ Microbiol 70:2474–2485
Article
CAS
PubMed
PubMed Central
Google Scholar
Doelger WP, Prescott SC (1934) Citric acid fermentation. Ind Eng Chem 26:1142–1149. https://doi.org/10.1021/ie50299a005
Article
CAS
Google Scholar
El-Imam AA, Du C (2014) Biodiversity, bioprospecting and development. J Biodivers Biopros Dev 1:1–8. https://doi.org/10.4172/ijbbd.1000119
Article
Google Scholar
Entian KD, Barnett JA (1992) Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem Sci 17:506–510. https://doi.org/10.1016/0968-0004(92)90341-6
Article
CAS
PubMed
Google Scholar
Fiechter A, Gmünder FK (1989) Metabolic control of glucose degradation in yeast and tumor cells. Adv Biochem Eng Biotechnol 39:1–28. https://doi.org/10.1007/BFb0051950
CAS
Article
PubMed
Google Scholar
Foster JW (1949) Chemical activities of Fungi. Academic Press, New York
Google Scholar
Fréalle E, Aliouat-Denis C-M, Delhaes L, Hot D, Dei-Cas E (2013) Transcriptomic insights into the oxidative response of stress-exposed Aspergillus fumigatus. Curr Pharm Des 19:3713–3737. https://doi.org/10.2174/1381612811319200011
Article
PubMed
Google Scholar
Geiser E, Przybilla SK, Friedrich A, Buckel W, Wierckx N, Blank LM, Bölker M (2016) Ustilago maydis produces itaconic acid via the unusual intermediate trans -aconitate. Microb Biotechnol 9:116–126. https://doi.org/10.1111/1751-7915.12329
Article
CAS
PubMed
Google Scholar
Gil-Bona A, Llama-Palacios A, Parra CM, Vivanco F, Nombela C, Monteoliva L, Gil C (2015) Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans. J Proteome Res 14:142–153. https://doi.org/10.1021/pr5007944
Article
CAS
PubMed
Google Scholar
Grigorenko EV, Small WC, Persson L-O, Srere PA (1990) Citrate synthase 1 interacts with the citrate transporter of yeast mitochondria. J Mol Recognit 3:215–219. https://doi.org/10.1002/jmr.300030508
Article
CAS
PubMed
Google Scholar
Guerinot ML, Meidl EJ, Plessner O (1990) Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol 172:3298–3303
Article
CAS
PubMed
PubMed Central
Google Scholar
Guevarra ED, Tabuchi T (1990) Accumulation of itaconic, 2-hydroxyparaconic, itatartaric, and malic acids by strains of the genus Ustilago. J Agric Biol Chem 54:2353–2358. https://doi.org/10.1080/00021369.1990.10870333
CAS
Article
Google Scholar
Gyamerah M (1995) Factors affecting the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation. Appl Microbiol Biotechnol 44:356–361. https://doi.org/10.1007/BF00169929
Article
CAS
Google Scholar
Habison A, Kubicek CP, Röhr M (1983) Partial purification and regulatory properties of phosphofructokinase from Aspergillus niger. Biochem J 209:669–676. https://doi.org/10.1042/BJ2090669
Article
CAS
PubMed
PubMed Central
Google Scholar
Hasegawa Y, Fukuda T, Hagimori K, Tomoda H, Omura S (2007) Tensyuic acids, new antibiotics produced by Aspergillus niger FKI-2342. Chem Pharm Bull 55:1338–1341
Article
CAS
PubMed
Google Scholar
Hesse SJA, Ruijter GJG, Dijkema C, Visser J (2000) Measurement of intracellular (compartmental) pH by 31P NMR in Aspergillus niger. J Biotechnol 77:5–15
Article
CAS
PubMed
Google Scholar
Hevekerl A, Kuenz A, Vorlop K-D (2014) Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl Microbiol Biotechnol 98:10005–10012
Article
CAS
PubMed
Google Scholar
Hossain AH, Li A, Brickwedde A, Wilms L, Caspers M, Overkamp K, Punt PJ (2016) Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger. Microb Cell Factories 15:130
Article
CAS
Google Scholar
Hou L, Liu L, Zhang H, Zhang L, Zhang L, Zhang J, Gao Q, Wang D (2018) Functional analysis of the mitochondrial alternative oxidase gene (aox1) from Aspergillus niger CGMCC 10142 and its effects on citric acid production. Appl Microbiol Biotechnol 102:7981–7995. https://doi.org/10.1007/s00253-018-9197-9
Article
CAS
PubMed
Google Scholar
Huang X, Lu X, Li Y, Li X, Li J-J (2014) Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain. Microb Cell Factories 13:119. https://doi.org/10.1186/s12934-014-0119-y
Article
CAS
Google Scholar
Kanamasa S, Dwiarti L, Okabe M, Park EY (2008) Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biotechnol 80:223–229
Article
CAS
PubMed
Google Scholar
Kane JA, Finlay AC, Amann PF (1945) Production of itaconic acid. US Patent 2385283A
Karaffa L, Kubicek CP (2003) Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl Microbiol Biotechnol 61:189–196. https://doi.org/10.1007/s00253-002-1201-7
Article
CAS
PubMed
Google Scholar
Karaffa L, Díaz R, Papp B, Fekete E, Sándor E, Kubicek CP (2015) A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus. Appl Microbiol Biotechnol 99:7937–7944. https://doi.org/10.1007/s00253-015-6735-6
Article
CAS
PubMed
Google Scholar
Karimi-Aghcheh R, Németh Z, Atanasova L, Fekete E, Paholcsek M, Sándor E, Aquino B, Druzhinina IS, Karaffa L, Kubicek CP (2014) The VELVET A orthologue VEL1 of Trichoderma reesei regulates fungal development and is essential for cellulase gene expression. PLoS One 9:e112799. https://doi.org/10.1371/journal.pone.0112799
Article
CAS
PubMed
PubMed Central
Google Scholar
Kinoshita K (1931) Production of itaconic acid and mannitol by a new mold, Aspergillus itaconicus. Acta Phytochim (Japan) 5:271–287
CAS
Google Scholar
Kirimura K, Kobayashi K, Ueda Y, Hattori T (2016) Phenotypes of gene disruptants in relation to a putative mitochondrial malate–citrate shuttle protein in citric acid-producing Aspergillus niger. Biosci Biotechnol Biochem 80:1737–1746. https://doi.org/10.1080/09168451.2016.1164583
Kisser M, Kubicek CP, Röhr M (1980) Influence of manganese on morphology and cell wall composition of Aspergillus niger during citric acid fermentation. Arch Microbiol 128:26–33. https://doi.org/10.1007/BF00422301
Article
CAS
PubMed
Google Scholar
Kobayashi E, Suzuki T, Yamamoto M (2013) Roles nrf2 plays in myeloid cells and related disorders. Oxidative Med Cell Longev 2013:529219–529217. https://doi.org/10.1155/2013/529219
Article
CAS
Google Scholar
Krebs HA (1940) The citric acid cycle and the Szent-Györgyi cycle in pigeon breast muscle. Biochem J 34:775–779. https://doi.org/10.1042/bj0340775
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubicek CP, Karaffa L (2010) Citric acid processes. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology, vol 3. John Wiley & Sons, Inc., Hoboken, pp 1652–1658
Google Scholar
Kubicek CP, Röhr M (1985) Aconitase and citric acid fermentation by Aspergillus niger. Appl Environ Microbiol 50:1336–1338. https://doi.org/10.1007/BF00422301
CAS
Article
PubMed
PubMed Central
Google Scholar
Kubicek CP, Hampel W, Röhr M (1979) Manganese deficiency leads to elevated amino acid pools in citric acid accumulating Aspergillus niger. Arch Microbiol 123:73–79. https://doi.org/10.1007/BF00403504
Article
CAS
PubMed
Google Scholar
Kubicek CP, Hönlinger C, Jaklitsch WM, Affenzeller K, Mach R, Gerngross T-U, Ying L (1990) Regulation of lysine biosynthesis in the fungus Penicillium chrysogenum. In: Amino Acids. Springer Netherlands, Dordrecht, pp 1029–1034. https://doi.org/10.1007/978-94-011-2262-7_128
Chapter
Google Scholar
Kuenz A, Krull S (2018) Biotechnological production of itaconic acid—things you have to know. Appl Microbiol Biotechnol 102:3901–3914. https://doi.org/10.1007/s00253-018-8895-7
Article
CAS
PubMed
Google Scholar
Kuenz A, Gallenmüller Y, Willke T, Vorlop K-D (2012) Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol 96:1209–1216. https://doi.org/10.1007/s00253-012-4221-y
Article
CAS
PubMed
Google Scholar
Li Q, Bai Z, O'Donnell A, Harvey LM, Hoskisson PA, McNeil B (2011a) Oxidative stress in fungal fermentation processes: the roles of alternative respiration. Biotechnol Lett 33:457–467
Article
CAS
PubMed
Google Scholar
Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M (2011b) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 48:602–611
Article
CAS
PubMed
Google Scholar
Lin Y-H, Li Y-F, Huang M-C, Tsai Y-C (2004) Intracellular expression of Vitreoscilla hemoglobin in Aspergillus terreus to alleviate the effect of a short break in aeration during culture. Biotechnol Lett 26:1067–1072. https://doi.org/10.1023/B:BILE.0000032964.15178.7c
Lockwood LB, Nelson GE (1946) Some factors affecting the production of itaconic acid by Aspergillus terreus in agitated cultures. Arch Biochem 10:365–374
CAS
PubMed
Google Scholar
Martin SM, Waters WR (1952) Production of citric acid by submerged fermentation. Ind Eng Chem 44:2229–2233. https://doi.org/10.1021/ie50513a067
Article
CAS
Google Scholar
McFadden BA, Williams JO, Roche TE (1971) Mechanism of action of isocitrate lyase from Pseudomonas indigofera. Biochemistry 10:1384–1390. https://doi.org/10.1021/bi00784a017
Article
CAS
PubMed
Google Scholar
Mesojednik S, Legiša M (2005) Posttranslational modification of 6-phosphofructo-1-kinase in Aspergillus niger. Appl Environ Microbiol 71:1425–1432. https://doi.org/10.1128/AEM.71.3.1425-1432.2005
Article
CAS
PubMed
PubMed Central
Google Scholar
Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, Binz T, Wegner A, Tallam A, Rausell A, Buttini M, Linster CL, Medina E, Balling R, Hiller K (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A 110:7820–7825. https://doi.org/10.1073/pnas.1218599110
Article
PubMed
PubMed Central
Google Scholar
Mlakar T, Legiša M (2006) Citrate inhibition-resistant form of 6-phosphofructo-1-kinase from Aspergillus niger. Appl Environ Microbiol 72:4515–4521. https://doi.org/10.1128/AEM.00539-06
Article
CAS
PubMed
PubMed Central
Google Scholar
Molnár ÁP, Németh Z, Kolláth IS, Fekete E, Flipphi M, Ág N, Soós Á, Kovács B, Sándor E, Kubicek CP, Karaffa L (2018) High oxygen tension increases itaconic acid accumulation, glucose consumption, and the expression and activity of alternative oxidase in Aspergillus terreus. Appl Microbiol Biotechnol 102:8799–8808. https://doi.org/10.1007/s00253-018-9325-6
Article
CAS
PubMed
Google Scholar
Németh Z, Molnár ÁP, Fejes B, Novák L, Karaffa L, Keller NP, Fekete E (2016) Growth-phase sterigmatocystin formation on lactose is mediated via low specific growth rates in Aspergillus nidulans. Toxins 8:354
Article
CAS
PubMed Central
Google Scholar
Niu J, Arentshorst M, Nair PDS, Dai Z, Baker SE, Frisvad JC, Nielsen KF, Punt PJ, Ram AFJ (2015) Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: LaeA is required for citric acid production and regulates the formation of some secondary metabolites. G3 genes, genomes. Genet 6:193–204. https://doi.org/10.1534/g3.115.024067
CAS
Article
Google Scholar
Nubel RC, Ratajak EJ (1962) Process for producing itaconic acid. US Patent 3,044,941
Odoni DI, van Gaal MP, Schonewille T, Tamayo-Ramos JA, Martins Dos Santos VAP, Suarez-Diez M, Schaap PJ (2017) Aspergillus niger secretes citrate to increase iron bioavailability. Front Microbiol 8:1424
Article
PubMed
PubMed Central
Google Scholar
Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84:597–606. https://doi.org/10.1007/s00253-009-2132-3
Article
CAS
PubMed
Google Scholar
Papagianni M, Mattey M (2006) Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology. Microb Cell Factories 5(3):3. https://doi.org/10.1186/1475-2859-5-3
Article
CAS
Google Scholar
Pardo M, Monteoliva L, Vázquez P, Martínez R, Molero G, Nombela C, Gil C (2004) PST1 and ECM33 encode two yeast cell surface GPI proteins important for cell wall integrity. Microbiology 150:4157–4170. https://doi.org/10.1099/mic.0.26924-0
Article
CAS
PubMed
Google Scholar
Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JAE, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EGJ, Debets AJM, Dekker P, van Dijck PWM, van Dijk A, Dijkhuizen L, Driessen AJM, D’Enfert C, Geysens S, Goosen C, Groot GSP, de Groot PWJ, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JPTW, van den Hondel CAMJJ, van der Heijden RTJM, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJEC, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NNME, Ram AFJ, Rinas U, Roubos JA, Sagt CMJ, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJJ, Wedler H, Wösten HAB, Zeng A-P, van Ooyen AJJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231. https://doi.org/10.1038/nbt1282
Article
PubMed
Google Scholar
Perlman D, Dorrell WW, Johnson MJ (1946a) Effect of metallic ions on the production of citric acid by Aspergillus niger. Arch Biochem 11:131–143
CAS
PubMed
Google Scholar
Perlman D, Kita DA, Peterson WH (1946b) Production of citric acid from cane molasses. Arch Biochem 11:123–129
CAS
PubMed
Google Scholar
Prömper C, Schneider R, Weiss H (1993) The role of the proton-pumping and alternative respiratory chain NADH:ubiquinone oxidoreductases in overflow catabolism of Aspergillus niger. Eur J Biochem 216:223–230. https://doi.org/10.1111/j.1432-1033.1993.tb18136.x
Article
PubMed
Google Scholar
Ramakrishnan CV, Steel R, Lentz CP (1955) Mechanism of citric acid formation and accumulation in Aspergillus niger. Arch Biochem Biophys 55:270–273
Article
CAS
PubMed
Google Scholar
Ruijter GJ, Panneman H, Xu D, Visser J (2000) Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production. FEMS Microbiol Lett 184:35–40
Article
CAS
PubMed
Google Scholar
Saha BC, Kennedy GJ, Bowman MJ, Qureshi N, Dunn RO (2018) Factors affecting production of Itaconic acid from mixed sugars by Aspergillus terreus. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-018-2831-2
Sakai A, Kusumoto A, Kiso Y, Furuya E (2004) Itaconate reduces visceral fat by inhibiting fructose 2,6-bisphosphate synthesis in rat liver. Nutrition 20:997–1002. https://doi.org/10.1016/j.nut.2004.08.007
Article
CAS
PubMed
Google Scholar
Salas ML, Vinuela E, Salas M, Sols A (1965) Citrate inhibition of phosphofructokinase and the pasteur effect. Biochem Biophys Res Commun 19:371–376. https://doi.org/10.1016/0006-291X(65)90471-7
Article
CAS
PubMed
Google Scholar
Sasikaran J, Ziemski M, Zadora PK, Fleig A, Berg IA (2014) Bacterial itaconate degradation promotes pathogenicity. Nat Chem Biol 10:371–377. https://doi.org/10.1038/nchembio.1482
Article
CAS
PubMed
Google Scholar
Shin WS, Lee D, Kim S, Jeong YS, Chun GT (2013) Application of scale-up criterion of constant oxygen mass transfer coefficient (k
L
a) for production of itaconic acid in a 50 L pilot-scale fermentor by fungal cells of Aspergillus terreus. J Microbiol Biotechnol 23:1445–1453
Article
CAS
PubMed
Google Scholar
Shin WS, Park B, Lee D, Oh MK, Chun GT, Kim S (2017) Enhanced production of itaconic acid through development of transformed fungal strains of Aspergillus terreus. J Microbiol Biotechnol 27:306–315
Article
CAS
PubMed
Google Scholar
Snell RL, Schweiger LB (1949) Production of citric acid by fermentation. US Patent 2,492,667
Steel R, Lentz CP, Martin SM (1955) Submerged citric acid fermentation of sugar beet molasses: increase in scale. Can J Microbiol 1:299–311. https://doi.org/10.1139/m55-042
Article
CAS
PubMed
Google Scholar
Steiger MG, Blumhoff ML, Mattanovich D, Sauer M (2013) Biochemistry of microbial itaconic acid production. Front Microbiol 4:23. https://doi.org/10.3389/fmicb.2013.00023
Article
CAS
PubMed
PubMed Central
Google Scholar
Strelko CL, Lu W, Dufort FJ, Seyfried TN, Chiles TC, Rabinowitz JD, Roberts MF (2011) Itaconic acid is a mammalian metabolite induced during macrophage activation. J Am Chem Soc 133:16386–16389. https://doi.org/10.1021/ja2070889
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun X, Wu H, Zhao G, Li Z, Wu X, Liu H, Zheng Z (2018) Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing. Bioprocess Biosyst Eng 41:1029–1038. https://doi.org/10.1007/s00449-018-1932-1
Article
CAS
PubMed
Google Scholar
Takahashi J, Yamada K (1959) Studies on the effects of some physical conditions on the submerged Mold culture. Part II. J Agric Chem Soc Jpn 33:707–710. https://doi.org/10.1271/nogeikagaku1924.33.8_707
Article
Google Scholar
Takahashi J, Yamada K, Asai T (1958) Studies on the effects of some physical conditions on the submerged mold culture. J Agric Chem Soc Jpn 32:501–506. https://doi.org/10.1271/nogeikagaku1924.32.7_501
Article
Google Scholar
Tevz G, Bencina M, Legisa M (2010) Enhancing itaconic acid production by Aspergillus terreus. Appl Microbiol Biotechnol 87:1657–1664. https://doi.org/10.1007/s00253-010-2642-z
Article
CAS
PubMed
Google Scholar
Tomlinson N, Campbell JJR, Trussellb PC (1950) The influence of zinc, iron, copper, and manganese on the production of citric acid by Aspergillus niger. J Bacteriol 59:217–227
CAS
PubMed Central
Google Scholar
van der Straat L, de Graaff LH (2014) Pathway transfer in fungi. Bioengineered 5:335–339. https://doi.org/10.4161/bioe.29936
Article
PubMed
PubMed Central
Google Scholar
van der Straat L, Vernooij M, Lammers M, van den Berg W, Schonewille T, Cordewener J, van der Meer I, Koops A, de Graaff LH (2014) Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microb Cell Factories 13:11. https://doi.org/10.1186/1475-2859-13-11
Article
CAS
Google Scholar
van Steenwyk G, Roszkowski M, Manuella F, Franklin TB, Mansuy IM (2018) Transgenerational inheritance of behavioral and metabolic effects of paternal exposure to traumatic stress in early postnatal life: evidence in the 4th generation. Environ Epigenet 4:dvy023. https://doi.org/10.1093/eep/dvy023
CAS
Article
PubMed
PubMed Central
Google Scholar
Vesth TC, Nybo JL, Theobald S, Frisvad JC, Larsen TO, Nielsen KF, Hoof JB, Brandl J, Salamov A, Riley R, Gladden JM, Phatale P, Nielsen MT, Lyhne EK, Kogle ME, Strasser K, McDonnell E, Barry K, Clum A, Chen C, LaButti K, Haridas S, Nolan M, Sandor L, Kuo A, Lipzen A, Hainaut M, Drula E, Tsang A, Magnuson JK, Henrissat B, Wiebenga A, Simmons BA, Mäkelä MR, de Vries RP, Grigoriev IV, Mortensen UH, Baker SE, Andersen MR (2018) Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nat Genet 50:1688–1695. https://doi.org/10.1038/s41588-018-0246-1
Article
CAS
PubMed
Google Scholar
Wallrath J, Schmidt M, Weiss H (1991) Correlation between manganese-deficiency, loss of respiratory chain complex I activity and citric acid production in Aspergillus niger. Arch Microbiol 158:435–438. https://doi.org/10.1007/BF00276305
Article
Google Scholar
Wang L, Zhang J, Cao Z, Wang Y, Gao Q, Zhang J, Wang D (2015) Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger. Microb Cell Factories 14:7. https://doi.org/10.1186/s12934-015-0190-z
Article
CAS
Google Scholar
Werpy T, Petersen G (2004) Top value added chemicals from biomass: Volume I: results of screening for potential candidates from sugars and synthesis gas. https://doi.org/10.2172/15008859
Yan N (2013) Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 38:151–159. https://doi.org/10.1016/j.tibs.2013.01.003
Article
CAS
PubMed
Google Scholar
Yin X, Shin H, Li J, Du G, Liu L, Chen J (2017) Comparative genomics and transcriptome analysis of Aspergillus niger and metabolic engineering for citrate production. Sci Rep 7:41040. https://doi.org/10.1038/srep41040
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu B, Zhang X, Sun W, Xi X, Zhao N, Huang Z, Ying Z, Liu L, Liu D, Niu H, Wu J, Zhuang W, Zhu C, Chen Y, Ying H (2018) Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam. J Biotechnol 276-277:1–9. https://doi.org/10.1016/j.jbiotec.2018.03.015
Article
CAS
PubMed
Google Scholar
Zehentgruber O, Kubicek CP, Röhr M (1980) Alternative respiration of Aspergillus niger. FEMS Microbiol Lett 8:71–74. https://doi.org/10.1111/j.1574-6968.1980.tb05052.x
Article
CAS
Google Scholar
Zhao M, Lu X, Zong H, Li J, Zhuge B (2018) Itaconic acid production in microorganisms. Biotechnol Lett 40:455–464. https://doi.org/10.1007/s10529-017-2500-5
Article
CAS
PubMed
Google Scholar