Applied Microbiology and Biotechnology

, Volume 102, Issue 5, pp 2213–2223 | Cite as

Genetic characterization and modification of a bioethanol-producing yeast strain

  • Ke Zhang
  • Ya-Nan Di
  • Lei Qi
  • Yang Sui
  • Ting-Yu Wang
  • Li Fan
  • Zhen-Mei Lv
  • Xue-Chang Wu
  • Pin-Mei Wang
  • Dao-Qiong Zheng
Applied genetics and molecular biotechnology


Yeast Saccharomyces cerevisiae strains isolated from different sources generally show extensive genetic and phenotypic diversity. Understanding how genomic variations influence phenotypes is important for developing strategies with improved economic traits. The diploid S. cerevisiae strain NY1308 is used for cellulosic bioethanol production. Whole genome sequencing identified an extensive amount of single nucleotide variations and small insertions/deletions in the genome of NY1308 compared with the S288c genome. Gene annotation of the assembled NY1308 genome showed that 43 unique genes are absent in the S288c genome. Phylogenetic analysis suggested most of the unique genes were obtained through horizontal gene transfer from other species. RNA-Seq revealed that some unique genes were not functional in NY1308 due to unidentified intron sequences. During bioethanol fermentation, NY1308 tends to flocculate when certain inhibitors (derived from the pretreatment of cellulosic feedstock) are present in the fermentation medium. qRT-PCR and genetic manipulation confirmed that the novel gene, NYn43, contributed to the flocculation ability of NY1308. Deletion of NYn43 resulted in a faster fermentation rate for NY1308. This work disclosed the genetic characterization of a bioethanol-producing S. cerevisiae strain and provided a useful paradigm showing how the genetic diversity of the yeast population would facilitate the personalized development of desirable traits.


Cellulosic ethanol Saccharomyces cerevisiae Whole genome sequencing RNA-Seq Unique genes 



This study was funded by the National Natural Science Foundation of China (31401058 and 31370132) and Natural Science Foundation of Zhejiang Province (LY18C060002).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2017_8727_MOESM1_ESM.pdf (5.6 mb)
ESM 1 (PDF 5729kb)
253_2017_8727_MOESM2_ESM.xlsx (7.2 mb)
ESM 2 (XLSX 7379kb)


  1. Akao T, Yashiro I, Hosoyama A, Kitagaki H, Horikawa H, Watanabe D, Akada R, Ando Y, Harashima S, Inoue T, Inoue Y, Kajiwara S, Kitamoto K, Kitamoto N, Kobayashi O, Kuhara S, Masubuchi T, Mizoguchi H, Nakao Y, Nakazato A, Namise M, Oba T, Ogata T, Ohta A, Sato M, Shibasaki S, Takatsume Y, Tanimoto S, Tsuboi H, Nishimura A, Yoda K, Ishikawa T, Iwashita K, Fujita N, Shimoi H (2011) Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Res 18(6):423–434. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OV, Missawa SK, Galzerani F, Costa GG, Vidal RO, Noronha MF, Dominska M, Andrietta MG, Andrietta SR, Cunha AF, Gomes LH, Tavares FC, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GA (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19(12):2258–2270. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bauer FF, Govender P, Bester MC (2010) Yeast flocculation and its biotechnological relevance. Appl Microbiol Biotechnol 88(1):31–39. CrossRefPubMedGoogle Scholar
  4. Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7(2):e1001287. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J (2005) ACT: the Artemis comparison tool. Bioinformatics 21(16):3422–3423. CrossRefPubMedGoogle Scholar
  6. Coi AL, Bigey F, Mallet S, Marsit S, Zara G, Gladieux P, Galeote V, Budroni M, Dequin S, Legras JL (2017) Genomic signatures of adaptation to wine biological ageing conditions in biofilm-forming flor yeasts. Mol Ecol 26(7):2150–2166. CrossRefPubMedGoogle Scholar
  7. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394–1403. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Deed RC, Fedrizzi B, Gardner RC (2017) Saccharomyces cerevisiae FLO1 gene demonstrates genetic linkage to increased fermentation rate at low temperatures. G3 (Bethesda) 7(3):1039–1048. CrossRefGoogle Scholar
  9. Fay JC, McCullough HL, Sniegowski PD, Eisen MB (2004) Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biol 5(4):R26. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Galeote V, Novo M, Salema-Oom M, Brion C, Valerio E, Goncalves P, Dequin S (2010) FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H+ symporter. Microbiology 156(12):3754–3761. CrossRefPubMedGoogle Scholar
  11. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34. CrossRefPubMedGoogle Scholar
  12. Govender P, Bester M, Bauer FF (2010) FLO gene-dependent phenotypes in industrial wine yeast strains. Appl Microbiol Biotechnol 86(3):931–945. CrossRefPubMedGoogle Scholar
  13. Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30(6):e23–223. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hall C, Dietrich FS (2007) The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering. Genetics 177(4):2293–2307. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Halme A, Bumgarner S, Styles C, Fink GR (2004) Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116(3):405–415. CrossRefPubMedGoogle Scholar
  16. Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):16. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kitichantaropas Y, Boonchird C, Sugiyama M, Kaneko Y, Harashima S, Auesukaree C (2016) Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation. AMB Express 6(1):107. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Koutinas A, Kanellaki M, Bekatorou A, Kandylis P, Pissaridi K, Dima A, Boura K, Lappa K, Tsafrakidou P, Stergiou P-Y (2016) Economic evaluation of technology for a new generation biofuel production using wastes. Bioresour Technol 200:178–185. CrossRefPubMedGoogle Scholar
  19. Lo WS, Dranginis AM (1996) FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 178(24):7144–7151. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. CrossRefPubMedGoogle Scholar
  21. Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik MA, Daran-Lapujade P, Vongsangnak W, Nielsen J, Heijne WH, Klaassen P, Paddon CJ, Platt D, Kotter P, van Ham RC, Reinders MJ, Pronk JT, de Ridder D, Daran JM (2012) De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Factories 11(1):36. CrossRefGoogle Scholar
  22. Perez-Ortin JE, Querol A, Puig S, Barrio E (2002) Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 12(10):1533–1539. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Silveira MH, Morais AR, da Costa Lopes AM, Olekszyszen DN, Bogel-Lukasik R, Andreaus J, Pereira Ramos L (2015) Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem 8(20):3366–3390. CrossRefPubMedGoogle Scholar
  24. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass–an overview. Bioresour Technol 199:76–82. CrossRefPubMedGoogle Scholar
  25. Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33(Web Server):W465–W467. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, Dietrich FS, McCusker JH (2015) The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res 25(5):762–774. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Symington LS, Rothstein R, Lisby M (2014) Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae. Genetics 198(3):795–835. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Westman JO, Mapelli V, Taherzadeh MJ, Franzen CJ (2014) Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production. Appl Environ Microbiol 80(22):6908–6918. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Will JL, Kim HS, Clarke J, Painter JC, Fay JC, Gasch AP (2010) Incipient balancing selection through adaptive loss of aquaporins in natural Saccharomyces cerevisiae populations. PLoS Genet 6(4):e1000893. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Yin Y, Petes TD (2013) Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae. PLoS Genet 9(10):e1003894. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zhang K, Tong M, Gao K, Di Y, Wang P, Zhang C, Wu X, Zheng D (2015) Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 42(2):207–218. CrossRefPubMedGoogle Scholar
  32. Zhang K, Zhang LJ, Fang YH, Jin XN, Qi L, Wu XC, Zheng DQ (2016) Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae. FEMS Yeast Res 16(2):fov118. CrossRefPubMedGoogle Scholar
  33. Zhao XQ, Bai FW (2009) Yeast flocculation: new story in fuel ethanol production. Biotechnol Adv 27(6):849–856. CrossRefPubMedGoogle Scholar
  34. Zheng W, Zhao H, Mancera E, Steinmetz LM, Snyder M (2010) Genetic analysis of variation in transcription factor binding in yeast. Nature 464(7292):1187–1191. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zheng DQ, Wu XC, Tao XL, Wang PM, Li P, Chi XQ, Li YD, Yan QF, Zhao YH (2011) Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour Technol 102(3):3020–3027. CrossRefPubMedGoogle Scholar
  36. Zheng DQ, Wang PM, Chen J, Zhang K, Liu TZ, Wu XC, Li YD, Zhao YH (2012) Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329. BMC Genomics 13(1):479. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zheng D, Zhang K, Gao K, Liu Z, Zhang X, Li O, Sun J, Zhang X, Du F, Sun P (2013) Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production. PLoS One 8(12):e85022. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zheng DQ, Chen J, Zhang K, Gao KH, Li O, Wang PM, Zhang XY, Du FG, Sun PY, Qu AM, Wu S, Wu XC (2014) Genomic structural variations contribute to trait improvement during whole-genome shuffling of yeast. Appl Microbiol Biotechnol 98(7):3059–3070. CrossRefPubMedGoogle Scholar
  39. Zheng D-Q, Zhang K, Wu X-C, Mieczkowski PA, Petes TD (2016) Global analysis of genomic instability caused by DNA replication stress in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 113(50):E8114–E8121. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zheng DQ, Jin XN, Zhang K, Fang YH, Wu XC (2017) Novel strategy to improve vanillin tolerance and ethanol fermentation performances of Saccharomycere cerevisiae strains. Bioresour Technol 231:53–58. CrossRefPubMedGoogle Scholar
  41. Zhu YO, Sherlock G, Petrov DA (2016) Whole genome analysis of 132 clinical Saccharomyces cerevisiae strains reveals extensive ploidy variation. G3 (Bethesda) 6(8):2421–2434. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Microbiology, College of Life SciencesZhejiang UniversityHangzhouChina
  2. 2.Ocean CollegeZhejiang UniversityZhoushanChina

Personalised recommendations