Skip to main content
Log in

Three extracellular dipeptidyl peptidases found in Aspergillus oryzae show varying substrate specificities

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Three extracellular dipeptidyl peptidase genes, dppB, dppE, and dppF, were unveiled by sequence analysis of the Aspergillus oryzae genome. We investigated their differential enzymatic profiles, in order to gain an understanding of the diversity of these genes. The three dipeptidyl peptidases were expressed using Aspergillus nidulans as the host. Each recombinant enzyme was purified and subsequently characterized. The enzymes displayed similar optimum pH values, but optimum temperatures, pH stabilities, and substrate specificities varied. DppB was identified as a Xaa-Prolyl dipeptidyl peptidase, while DppE scissile substrates were similar to the substrates for Aspergillus fumigatus DPPV (AfDPPV). DppF was found to be a novel enzyme that could digest both substrates for A. fumigatus DPPIV and AfDPPV. Semi-quantitative PCR revealed that the transcription of dppB in A. oryzae was induced by protein substrates and repressed by the addition of an inorganic nitrogen source, despite the presence of protein substrates. The transcription of dppE depended on its growth time, while the transcription of dppF was not affected by the type of the nitrogen source in the medium, and it started during the early stage of the fungal growth. Based on these results, we conclude that these enzymes may represent the nutrition acquisition enzymes. Additionally, DppF may be one of the sensor peptidases responsible for the detection of the protein substrates in A. oryzae environment. DppB may be involved in nitrogen assimilation control, since the transcription of dppB was repressed by NaNO3, despite the presence of protein substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beauvais A, Monod M, Debeaupuis JP, Diaquin M, Kobayashi H, Latgé JP (1997a) Biochemical and antigenic characterization of a new dipeptidyl-peptidase isolated from Aspergillus fumigatus. J Biol Chem 272:6238–6244. doi:10.1074/jbc.272.10.6238

    Article  CAS  PubMed  Google Scholar 

  • Beauvais A, Monod M, Wyniger J, Debeaupuis JP, Grouzmann E, Brakch N, Svab J, Hovanessian AG, Latgé JP (1997b) Dipeptidyl-peptidase IV secreted by Aspergillus fumigatus, a fungus pathogenic to humans. Infect Immun 65:3042–3047

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann A, Hartmann T, Cairns T, Bignell EM, Krappmann S (2009) A regulator of Aspergillus fumigatus extracellular proteolytic activity is dispensable for virulence. Infect Immun 77:4041–4050. doi:10.1128/IAI.00425-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doumas A, van den Broek P, Affolter M, Monod M (1998) Characterization of the prolyl dipeptidyl peptidase gene (dppIV) from the koji mold Aspergillus oryzae. Appl Environ Microbiol 64:4809–4815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujioka T, Mizutani O, Furukawa K, Sato N, Yoshimi A, Yamagata Y, Nakajima T, Abe K (2007) MpkA-dependent and -independent cell wall integrity signaling in Aspergillus nidulans. Eukaryot Cell 6:1497–1510. doi:10.1128/EC.00281-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Baştürkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D’Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Peñalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115. doi:10.1038/nature04341

    Article  CAS  PubMed  Google Scholar 

  • Gomi K, Iimura Y, Hara S (1987) Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene. Agric Biol Chem 51:2549–2555. doi:10.1271/bbb1961.51.2549

    Article  CAS  Google Scholar 

  • Haltmann T, Cairns TC, Olbermann P, Morschhäuser J, Bignell EM, Krappmann S (2011) Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Mol Microbiol 82:917–935. doi:10.1111/j.1365-2958.2011.07868.x

    Article  Google Scholar 

  • Ichishima E (2000) Unique catalytic and molecular properties of hydrolases from Aspergillus used in Japanese bioindustries. Biosci Biotechnol Biochem 64:675–688. doi:10.1271/bbb.64.675

    Article  CAS  PubMed  Google Scholar 

  • Ishida K, Kuboshima M, Morita H, Maeda H, Okamoto A, Takeuchi M, Yamagata Y (2014) Diversity in mRNA expression of the serine-type carboxypeptidase ocpG in Aspergillus oryzae through intron retention. Biosci Biotechnol Biochem 78:1328–1336. doi:10.1080/09168451.2014.923291

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto K (2002) Molecular biology of the Koji molds. Adv Appl Microbiol 51:129–153. doi:10.1016/S0065-2164(02)51004-2

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  • Machida M (2002) Progress of Aspergillus oryzae genomics. Adv Appl Microbiol 51:81–106. doi:10.1016/S0065-2164(02)51002-9

    Article  CAS  PubMed  Google Scholar 

  • Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, DW Denning, JE Galagan, WC Nierman, Yu J, DB Archer, JW Bennett, D Bhatnagar, TE Cleveland, ND Fedorova, O Gotoh, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, PR Juvvadi, M Kato, Y Kato, T Kin, A Kokubun, H Maeda, N Maeyama, J Maruyama, H Nagasaki, T Nakajima, K Oda, K Okada, I Paulsen, K Sakamoto, T Sawano, M Takahashi, K Takase, Y Terabayashi, JR Wortman, O Yamada, Y Yamagata, H Anazawa, Y Hata, Y Koide, T Komori, Y Koyama, T Minetoki, S Suharnan, A Tanaka, K Isono, S Kuhara, N Ogasawara, H Kikuchi (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161. doi:10.1038/nature04300

  • Maley F, Trimble RB, Tarentino AL, Plummer TH Jr (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180:195–204. doi:10.1016/0003-2697(89)90115-2

    Article  CAS  PubMed  Google Scholar 

  • Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038

    CAS  PubMed  Google Scholar 

  • Minetoki T, Tsuboi H, Koda A, Ozeki K (2003) Development of high expression system with the improved promoter using the cis-acting elements in Aspergillus species. J Biol Macromol 3:89–96

    CAS  Google Scholar 

  • Monod M, Beauvais A (2004) Dipeptidyl-peptidases IV and V of Aspergillus. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes, vol 2, 2nd edn. Elsevier, London, pp 1911–1913

  • Morita H, Kuriyama K, Akiyama N, Okamoto A, Yamagata Y, Kusumoto K-I, Koide Y, Ishida H, Takeuchi M (2010) Molecular cloning of ocpO encoding carboxypeptidase O of Aspergillus oryzae IAM2640. Biosci Biotechnol Biochem 74:1000–1006

    Article  CAS  PubMed  Google Scholar 

  • Motoyama T, Kojima N, Horiuchi H, Ohta A, Takagi M (1994) Isolation of a chitin synthase gene (chsC) of Aspergillus nidulans. Biosci Biotechnol Biochem 58:2254–2257. doi:10.1271/bbb.58.2254

    Article  CAS  PubMed  Google Scholar 

  • Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, García JL, García MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jiménez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafon A, Latgé JP, Li W, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O’Neil S, Paulsen I, Peñalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD, Rodriguez de Córdoba S, Rodríguez-Peña JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sánchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, Vazquez de Aldana CR, Weidman J, White O, Woodward J, Yu JH, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156. doi:10.1038/nature04332

    Article  CAS  PubMed  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d’Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wösten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231. doi:10.1038/nbt1282

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsh EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY

    Google Scholar 

  • Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162

    Article  CAS  PubMed  Google Scholar 

  • Tachi H, Ito H, Ichishhima E (1992) An X-proly dipeptidyl peptidase from Aspergillus oryzae. Phytochemistry 31:3707–3709. doi:10.1016/S0031-9422(00)97513-7

    Article  CAS  Google Scholar 

  • Taylor MJ, Richardson T (1979) Applications of microbial enzymes in food systems and in biotechnology. Adv Appl Microbiol 25:7–35. doi:10.1016/S0065-2164(08)70144-8

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B (2014) Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 28:656. doi:10.3389/fmicb.2014.00656

    Google Scholar 

  • Wiechelman KJ, Braun RD, Fitzpatrick JD (1988) Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem 175:231–237. doi:10.1016/0003-2697(88)90383-1

    Article  CAS  PubMed  Google Scholar 

  • Wolfinbarger L Jr, Marzluf GA (1974) Peptide utilization by amino acid auxotrophs of Neurospora crassa. J Bacteriol 119:371–378

  • Yamamoto S, Shiga K, Kodama Y, Imamura M, Uchida R, Obata A, Bamba T, Fukusaki E (2014) Analysis of the correlation between dipeptides and taste differences among soy sauces by using metabolomics-based component profiling. J Biosci Bioeng 118:56–63. doi:10.1016/j.jbiosc.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  • Yike I (2011) Fungal proteases and their pathophysiological effects. Mycopathologia 171:299–323. doi:10.1007/s11046-010-9386-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for the Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhei Yamagata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any study with human participants or animals performed by any of the authors.

Electronic Supplementary Material

ESM 1

(PDF 686 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeda, H., Sakai, D., Kobayashi, T. et al. Three extracellular dipeptidyl peptidases found in Aspergillus oryzae show varying substrate specificities. Appl Microbiol Biotechnol 100, 4947–4958 (2016). https://doi.org/10.1007/s00253-016-7339-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7339-5

Keywords

Navigation