Skip to main content

Advertisement

Log in

Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Glycerol is an inexpensive and abundant source for biofuel production on a large scale. Escherichia coli is a robust bacterium for producing hydrogen; however, its hydrogen productivity from glycerol is low. In this study, we conducted random transposon mutagenesis to identify uncharacterized genes whose inactivation is beneficial for hydrogen production from glycerol. Through screening, four mutant strains were found that are able to have from 1.3- to 1.6-fold higher hydrogen productivity (μmol H2/mg protein) than that of their parent strain (p < 0.05). These mutations were identified as aroM, gatZ, ycgR, and yfgI. The hydrogen yield (mol H2/mol glycerol consumed) of the aroM, gatZ, ycgR, and yfgI strains was 1.7-, 1.4-, 2.4-, and 2.1-fold higher than that of their parent strain, respectively. Moreover, a single disruption in these genes resulted in a faster cell growth and glycerol consumption under anaerobic conditions. In E. coli, AroM is predicted to be involved in the shikimate pathway, GatZ is tagatose-1,6-bisphosphate aldolase 2 which converts dihydroxyacetone phosphate to 1,6-biphosphate, and YcgR acts as a molecular brake limiting the swimming speed and ATP consumption. So far, the function of YfgI in general and in hydrogen production in particular remains unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed A (1985) A rapid procedure for DNA sequencing using transposon-promoted deletions in Escherichia coli. Gene 39(2–3):305–310

    Article  CAS  PubMed  Google Scholar 

  • Altaras NE, Cameron DC (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl Environ Microbiol 65(3):1180–1185

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anand P, Saxena RK (2012) A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. N Biotechnol 29(2):199–205

    Article  CAS  PubMed  Google Scholar 

  • Armitage JP, Berry RM (2010) Time for bacteria to slow down. Cell 141(1):24–26

    Article  CAS  PubMed  Google Scholar 

  • Axley MJ, Grahame DA, Stadtman TC (1990) Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. J Biol Chem 265(30):18213–18218

    CAS  PubMed  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006 0008

  • Bagramyan K, Mnatsakanyan N, Poladian A, Vassilian A, Trchounian A (2002) The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Lett 516(1–3):172–178

    Article  CAS  PubMed  Google Scholar 

  • Blankschien MD, Clomburg JM, Gonzalez R (2010) Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab Eng 12(5):409–419

    Article  CAS  PubMed  Google Scholar 

  • Blattner FR (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462

    Article  CAS  PubMed  Google Scholar 

  • Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, Kaever V, Sourjik V, Roth V, Jenal U (2010) Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141(1):107–116

    Article  CAS  PubMed  Google Scholar 

  • Bongaerts J, Krämer M, Müller U, Raeven L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3(4):289–300

    Article  CAS  PubMed  Google Scholar 

  • Brinkkötter A, Shakeri-Garakani A, Lengeler JW (2002) Two class II D-tagatose-bisphosphate aldolases from enteric bacteria. Arch Microbiol 177(5):410–419

    Article  PubMed  Google Scholar 

  • Cai J, Wang G (2014) Photo-biological hydrogen production by an acid tolerant mutant of Rhodovulum sulfidophilum P5 generated by transposon mutagenesis. Bioresour Technol 154:254–259

    Article  CAS  PubMed  Google Scholar 

  • Chao Y, Patnaik R, Roof WD, Young RF, Liao JC (1993) Control of gluconeogenic growth by pps and pck in Escherichia coli. J Bacteriol 175(21):6939–6944

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clomburg JM, Gonzalez R (2011) Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol Bioeng 108(4):867–879

    Article  CAS  PubMed  Google Scholar 

  • Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31(1):20–28

    Article  CAS  PubMed  Google Scholar 

  • Cooper RA (1984) Metabolism of methylglyoxal in microorganisms. Annu Rev Microbiol 38(0066–4227):49–68

    Article  CAS  PubMed  Google Scholar 

  • Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26(1):13–28

    Article  CAS  Google Scholar 

  • Das S, Noe JC, Paik S, Kitten T (2005) An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites. J Microbiol Methods 63(1):89–94

    Article  CAS  PubMed  Google Scholar 

  • DeFeyter RC, Pittard J (1986) Genetic and molecular analysis of aroL, the gene for shikimate kinase II in Escherichia coli K-12. J Bacteriol 165(1):226–232

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dobson R, Gray V, Rumbold K (2012) Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol 39(2):217–226

    Article  CAS  PubMed  Google Scholar 

  • Durnin G, Clomburg J, Yeates Z, Alvarez PJ, Zygourakis K, Campbell P, Gonzalez R (2009) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103(1):148–161

    Article  CAS  PubMed  Google Scholar 

  • Ely B, Pittard J (1979) Aromatic amino acid biosynthesis: regulation of shikimate kinase in Escherichia coli K-12. J Bacteriol 138(3):933–943

    PubMed Central  CAS  PubMed  Google Scholar 

  • Enoch HG, Lester RL (1975) The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J Biol Chem 250(17):6693–6705

    CAS  PubMed  Google Scholar 

  • Girgis HS, Liu Y, Ryu WS, Tavazoie S (2007) A comprehensive genetic characterization of bacterial motility. PLoS Genet 3(9):1644–1660

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez R, Murarka A, Dharmadi Y, Yazdani SS (2008) A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metab Eng 10(5):234–245

    Article  CAS  PubMed  Google Scholar 

  • Hamer L, DeZwaan TM, Montenegro-Chamorro MV, Frank SA, Hamer JE (2001) Recent advances in large-scale transposon mutagenesis. Curr Opin Chem Biol 5(1):67–73

    Article  CAS  PubMed  Google Scholar 

  • Hansen CF, Hernandez A, Mullan BP, Moore K, Trezona-Murray M, King RH, Pluske JR (2009) A chemical analysis of samples of crude glycerol from the production of biodiesel in Australia, and the effects of feeding crude glycerol to growing-finishing pigs on performance, plasma metabolites and meat quality at slaughter. Anim Prod Sci 49(2):154–161

    Article  CAS  Google Scholar 

  • Herrmann KM (1995) The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol 107(1):7–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu H, Wood TK (2010) An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. Biochem Biophys Res Commun 391(1):1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Han S, Kim S, Shin H (2006) Effect of gas sparging on continuous fermentative hydrogen production. Int J Hydrog Energy 31(15):2158–2169

    Article  CAS  Google Scholar 

  • Kim DH, Kim MS (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102(18):8423–8431

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Seol E, Oh Y-K, Wang GY, Park S (2009) Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains. Int J Hydrog Energy 34(17):7417–7427

    Article  CAS  Google Scholar 

  • Knobloch JKM, Nedelmann M, Kiel K, Bartscht K, Horstkotte MA, Dobinsky S, Rohde H, Mack D (2003) Establishment of an arbitrary PCR for rapid identification of Tn917 insertion sites in Staphylococcus epidermidis: characterization of biofilm-negative and nonmucoid mutants. Appl Environ Microbiol 69(10):5812–5818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ko M, Park C (2000) Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J Mol Biol 303(3):371–382

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang G, Zhu D, Pan G (2012) Improvement of hydrogen production by transposon-mutagenized strain of Pantoea agglomerans BH18. Int J Hydrog Energy 37(10):8282–8287

    Article  CAS  Google Scholar 

  • Ma C, Guo L, Yang H (2012a) Improved photo—hydrogen production by transposon mutant of Rhodobacter capsulatus with reduced pigment. Int J Hydrog Energy 37(17):12229–12233

    Article  CAS  Google Scholar 

  • Ma Q, Fonseca A, Liu W, Fields AT, Pimsler ML, Spindola AF, Tarone AM, Crippen TL, Tomberlin JK, Wood TK (2012b) Proteus mirabilis interkingdom swarming signals attract blow flies. ISME J 6(7):1356–1366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maeda T, Sanchez-Torres V, Wood TK (2007) Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:879–890

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Sanchez-Torres V, Wood TK (2008a) Metabolic engineering to enhance bacterial hydrogen production. Microb Biotechnol 1(1):30–39

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maeda T, Sanchez-Torres V, Wood TK (2008b) Protein engineering of hydrogenase 3 to enhance hydrogen production. Appl Microbiol Biotechnol 79(1):77–86

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Yoshimura T, Shimazu T, Shirai Y, Ogawa HI (2009) Enhanced production of lactic acid with reducing excess sludge by lactate fermentation. J Hazard Mater 168(2–3):656–663

    Article  CAS  PubMed  Google Scholar 

  • Mazumdar S, Blankschien DM, Clomburg MJ, Gonzalez R (2013) Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli. Microb Cell Factories 12:7

    Article  CAS  Google Scholar 

  • Mohd Yusoff MZ, Hashiguchi Y, Maeda T, Wood TK (2013) Four products from Escherichia coli pseudogenes increase hydrogen production. Biochem Biophys Res Commun 439(4):576–579

    Article  CAS  PubMed  Google Scholar 

  • Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74(4):1124–1135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakata PA (2002) The generation of a transposon-mutagenized Burkeholderia glumae library to isolate novel mutants. Plant Sci 162(2):267–271

    Article  CAS  Google Scholar 

  • Nobelmann B, Lengeler JW (1995) Sequence of the gat operon for galactitol utilization from a wild-type strain EC3132 of Escherichia coli. Biochim Biophys Acta 1262(1):69–72

    Article  PubMed  Google Scholar 

  • Nobelmann B, Lengeler JW (1996) Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. J Bacteriol 178(23):6790–6795

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pannekoek H, Hille J, Noordermeer I (1980) Relief of polarity caused by transposon Tn5: application in mapping a cloned region of the Escherichia coli uvrB locus essential for UV resistance. Gene 12(1–2):51–61

    Article  CAS  PubMed  Google Scholar 

  • Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol Cell 38(1):128–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poladyan A, Avagyan A, Vassilian A, Trchounian A (2013) Oxidative and reductive routes of glycerol and glucose fermentation by Escherichia coli batch cultures and their regulation by oxidizing and reducing reagents at different pHs. Curr Microbiol 66(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Reizer J, Ramseier TM, Reizer A, Charbit A, Saier MH Jr (1996) Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. Microbiology 142(Pt 2):231–250

    Article  CAS  PubMed  Google Scholar 

  • Riley M, Abe T, Arnaud MB, Berlyn MK, Blattner FR, Chaudhuri RR, Glasner JD, Horiuchi T, Keseler IM, Kosuge T, Mori H, Perna NT, Plunkett G 3rd, Rudd KE, Serres MH, Thomas GH, Thomson NR, Wishart D, Wanner BL (2006) Escherichia coli K-12: a cooperatively developed annotation snapshot-2005. Nucleic Acids Res 34(1):1–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saikusa T, Rhee H-I, Watanabe K, Murata K, Kimura A (1987) Metabolism of 2-oxoaldehydes in bacteria: purification and characterization of methylglyoxal reductase from Escherichia coli. Agric Biol Chem 51(7):1893–1899

    Article  CAS  Google Scholar 

  • Sanchez-Torres V, Maeda T, Wood TK (2009) Protein engineering of the transcriptional activator FhlA to enhance hydrogen production in Escherichia coli. Appl Environ Microbiol 75(17):5639–5646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanchez-Torres V, Mohd Yusoff MZ, Nakano C, Maeda T, Ogawa HI, Wood TK (2013) Influence of Escherichia coli hydrogenases on hydrogen fermentation from glycerol. Int J Hydrog Energy 38(10):3905–3912

    Article  CAS  Google Scholar 

  • Shams Yazdani S, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10(6):340–351

    Article  PubMed  Google Scholar 

  • Škunca N, Bošnjak M, Kriško A, Panov P, Džeroski S, Šmuc T, Supek F (2013) Phyletic profiling with cliques of orthologs is enhanced by signatures of paralogy relationships. PLoS Comput Biol 9(1):e1002852

    Article  PubMed Central  PubMed  Google Scholar 

  • Tokumoto H, Tanaka M (2012) Novel anaerobic digestion induced by bacterial components for value-added byproducts from high-loading glycerol. Bioresour Technol 107:327–332

    Article  CAS  PubMed  Google Scholar 

  • Tran KT, Maeda T, Wood TK (2014) Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 98(10):4757–4770

    Article  CAS  PubMed  Google Scholar 

  • Trchounian K, Sanchez-Torres V, Wood TK, Trchounian A (2011) Escherichia coli hydrogenase activity and H2 production under glycerol fermentation at a low pH. Int J Hydrog Energy 36(7):4323–4331

    Article  CAS  Google Scholar 

  • Trinh CT, Srienc F (2009) Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol. Appl Environ Microbiol 75(21):6696–6705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Truniger V, Boos W (1994) Mapping and cloning of gldA, the structural gene of the Escherichia coli glycerol dehydrogenase. J Bacteriol 176:1796–1800

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wheeler D, Bhagwat M (2007) BLAST QuickStart: example-driven web-based BLAST tutorial. In: Bergman NH (ed) Comparative genomics: volumes 1 and 2. Humana Press Inc, Totowa

    Google Scholar 

  • Yamane T (1967) Statistics, an introductory analysis. Harper and Row, New York

    Google Scholar 

  • Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol Biofuels 5:13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Shanmugam KT, Ingram LO (2010) Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 76(8):2397–2401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou J, Rudd KE (2013) EcoGene 3.0. Nucleic Acids Res 41(Database issue):D613–D624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Japan Student Services Organization for providing the scholarship of K. T. Tran during this study. This research was supported by the JGC-S Scholarship Foundation. Many thanks to the NBRP-E. coli at the National Institute of Genetics (Japan) for providing Keio mutant strains.

Conflict of interest

We declare that we do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshinari Maeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, K.T., Maeda, T., Sanchez-Torres, V. et al. Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol. Appl Microbiol Biotechnol 99, 2573–2581 (2015). https://doi.org/10.1007/s00253-014-6338-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6338-7

Keywords

Navigation