Skip to main content
Log in

Characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agent bacterium, Francisella tularensis Schu S4 and the surrogate type B live vaccine strain (LVS)

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Here, we constructed stable, constitutively expressed, chromosomal green (GFP) and red fluorescent (RFP) reporters in the genome of the surrogate strain, Francisella tularensis spp. holarctica LVS (herein LVS), and the select agent, F. tularensis Schu S4. A bioinformatic approach was used to identify constitutively expressed genes. Two promoter regions upstream of the FTT1794 and rpsF(FTT1062) genes were selected and fused with GFP and RFP reporter genes in pMP815, respectively. While the LVS strains with chromosomally integrated reporter fusions exhibited fluorescence, we were unable to deliver the same fusions into Schu S4. Neither a temperature-sensitive Francisella replicon nor a pBBR replicon in the modified pMP815 derivatives facilitated integration. However, a mini-Tn7 integration system was successful at integrating the reporter fusions into the Schu S4 genome. Finally, fluorescent F. tularensis LVS and a mutant lacking MglA were assessed for growth in monocyte-derived macrophages (MDMs). As expected, when compared to wild-type bacteria, replication of an mglA mutant was significantly diminished, and the overall level of fluorescence dramatically decreased with infection time. The utility of the fluorescent Schu S4 strain was also examined within infected MDMs treated with clarithromycin and enrofloxacin. Taken together, this study describes the development of an important reagent for F. tularensis research, especially since the likelihood of engineered antibiotic resistant strains will emerge with time. Such strains will be extremely useful in high-throughput screens for novel compounds that could interfere with critical virulence processes in this important bioweapons agent and during infection of alveolar macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Capellan J, Fong IW (1993) Tularemia from a cat bite: case report and review of feline-associated tularemia. Clin Infect Dis 16(4):472–475

    Article  PubMed  CAS  Google Scholar 

  • Eigelsbach HT, Downs CM (1961) Prophylactic effectiveness of live and killed tularemia vaccines I: Production of vaccine and evaluation in the white mouse and guinea pig. J Immunol 87:415–425

    PubMed  CAS  Google Scholar 

  • Elkins KL, Leiby DA, Winegar RK, Nacy CA, Fortier AH (1992) Rapid generation of specific protective immunity to Francisella tularensis. Infect Immun 60(11):4571–4577

    PubMed  CAS  Google Scholar 

  • Ellis J, Oyston PC, Green M, Titball RW (2002) Tularemia. Clin Microbiol Rev 15(4):631–646

    Article  PubMed  Google Scholar 

  • Frank DW, Zahrt TC (2007) Genetics and genetic manipulation in Francisella tularensis. Ann N Y Acad Sci 1105:67–97

    Article  PubMed  CAS  Google Scholar 

  • Horzempa J, Shanks RM, Brown MJ, Russo BC, O'Dee DM, Nau GJ (2010) Utilization of an unstable plasmid and the I-SceI endonuclease to generate routine markerless deletion mutants in Francisella tularensis. J Microbiol Methods 80(1):106–108

    Article  PubMed  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166(1):175–176

    Article  PubMed  CAS  Google Scholar 

  • Larsson P, Oyston PC, Chain P, Chu MC, Duffield M, Fuxelius HH, Garcia E, Halltorp G, Johansson D, Isherwood KE, Karp PD, Larsson E, Liu Y, Michell S, Prior J, Prior R, Malfatti S, Sjostedt A, Svensson K, Thompson N, Vergez L, Wagg JK, Wren BW, Lindler LE, Andersson SG, Forsman M, Titball RW (2005) The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet 37(2):153–159

    Article  PubMed  CAS  Google Scholar 

  • Lauriano CM, Barker JR, Yoon SS, Nano FE, Arulanandam BP, Hassett DJ, Klose KE (2004) MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci U S A 101(12):4246–4249

    Article  PubMed  CAS  Google Scholar 

  • Leiby DA, Fortier AH, Crawford RM, Schreiber RD, Nacy CA (1992) In vivo modulation of the murine immune response to Francisella tularensis LVS by administration of anticytokine antibodies. Infect Immun 60(1):84–89

    PubMed  CAS  Google Scholar 

  • Li J, Ryder C, Mandal M, Ahmed F, Azadi P, Snyder DS, Pechous RD, Zahrt T, Inzana TJ (2007) Attenuation and protective efficacy of an O-antigen-deficient mutant of Francisella tularensis LVS. Microbiology 153(Pt 9):3141–3153

    Article  PubMed  CAS  Google Scholar 

  • LoVullo ED, Molins-Schneekloth CR, Schweizer HP, Pavelka MS Jr (2009) Single-copy chromosomal integration systems for Francisella tularensis. Microbiology 155(Pt 4):1152–1163

    Article  PubMed  CAS  Google Scholar 

  • Maier TM, Casey MS, Becker RH, Dorsey CW, Glass EM, Maltsev N, Zahrt TC, Frank DW (2007) Identification of Francisella tularensis Himar1-based transposon mutants defective for replication in macrophages. Infect Immun 75(11):5376–5389

    Article  PubMed  CAS  Google Scholar 

  • Maier TM, Havig A, Casey M, Nano FE, Frank DW, Zahrt TC (2004) Construction and characterization of a highly efficient Francisella shuttle plasmid. Appl Environ Microbiol 70(12):7511–7519

    Article  PubMed  CAS  Google Scholar 

  • Maier TM, Pechous R, Casey M, Zahrt TC, Frank DW (2006) In vivo Himar1-based transposon mutagenesis of Francisella tularensis. Appl Environ Microbiol 72(3):1878–1885

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • McLendon MK, Apicella MA, Allen LA (2006) Francisella tularensis: taxonomy, genetics, and immunopathogenesis of a potential agent of biowarfare. Annu Rev Microbiol 60:167–185

    Article  PubMed  CAS  Google Scholar 

  • McRae S, Pagliai FA, Mohapatra NP, Gener A, Mahmou AS, Gunn JS, Lorca GL, Gonzalez CF (2010) Inhibition of AcpA phosphatase activity with ascorbate attenuates Francisella tularensis intramacrophage survival. J Biol Chem 285(8):5171–5177

    Article  PubMed  CAS  Google Scholar 

  • Rasko DA, Esteban CD, Sperandio V (2007) Development of novel plasmid vectors and a promoter trap system in Francisella tularensis compatible with the pFLN10 based plasmids. Plasmid 58(2):159–166

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez SA, Davis G, Klose KE (2009) Targeted gene disruption in Francisella tularensis by group II introns. Methods 49(3):270–274

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez SA, Yu JJ, Davis G, Arulanandam BP, Klose KE (2008) Targeted inactivation of Francisella tularensis genes by group II introns. Appl Environ Microbiol 74(9):2619–2626

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Priefer U, Puehler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1:784–791

    Article  CAS  Google Scholar 

  • Titball RW, Petrosino JF (2007) Francisella tularensis genomics and proteomics. Ann N Y Acad Sci 1105:98–121

    Article  PubMed  CAS  Google Scholar 

  • Wehrly TD, Chong A, Virtaneva K, Sturdevant DE, Child R, Edwards JA, Brouwer D, Nair V, Fischer ER, Wicke L, Curda AJ, Kupko JJ 3rd, Martens C, Crane DD, Bosio CM, Porcella SF, Celli J (2009) Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol 11(7):1128–1150

    Article  PubMed  CAS  Google Scholar 

  • Zaide G, Grosfeld H, Ehrlich S, Zvi A, Cohen O, Shafferman A (2011) Identification and characterization of novel and potent transcription promoters of Francisella tularensis. Appl Environ Microbiol 77(5):1608–1618

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the United States Defense Threats Reduction Agency INSIGHTS Program. We also wish to thank Drs. M. Pavelka (University of Rochester) and T. Zahrt (Medical College of Wisconsin) for provision of plasmid vectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel J. Hassett or Thomas J. Lamkin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 293 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, S., Saldanha, R., Pemberton, A. et al. Characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agent bacterium, Francisella tularensis Schu S4 and the surrogate type B live vaccine strain (LVS). Appl Microbiol Biotechnol 97, 9029–9041 (2013). https://doi.org/10.1007/s00253-013-5081-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5081-9

Keywords

Navigation