Skip to main content

Metabolic engineering of Candida utilis for isopropanol production

Abstract

A genetically-engineered strain of the yeast Candida utilis harboring genes encoding (1) an acetoacetyl-CoA transferase from Clostridium acetobutylicum ATCC 824, (2) an acetoacetate decarboxylase, and (3) a primary–secondary alcohol dehydrogenase derived from Clostridium beijerinckii NRRL B593 produced up to 0.21 g/L of isopropanol. Because the engineered strain accumulated acetate, isopropanol titer was improved to 1.2 g/L under neutralized fermentation conditions. Optimization of isopropanol production was attempted by the overexpression and disruption of several endogenous genes. Simultaneous overexpression of two genes encoding acetyl-CoA synthetase and acetyl-CoA acetyltransferase increased isopropanol titer to 9.5 g/L. Moreover, in fed-batch cultivation, the resultant recombinant strain produced 27.2 g/L of isopropanol from glucose with a yield of 41.5 % (mol/mol). This is the first demonstration of the production of isopropanol by genetically engineered yeast.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Boze H, Moulin G, Galzy P (1992) Production of food and fodder yeasts. Crit Rev Biotechnol 12:65–86

    Article  CAS  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  3. Brethauer S, Wyman CE (2010) Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101:4862–4874

    Article  CAS  Google Scholar 

  4. Chen JS, Hiu SF (1986) Acetone–butanol–isopropanol production by Clostridium beijerinckii (synonym, Clostridium butylicum). Biotechnol Lett 8:371–376

    Article  CAS  Google Scholar 

  5. De Jong-Gubbels P, van den Berg MA, Steensma HY, van Dijken JP (1997) Pronk, JT (1997) The Saccharomyces cerevisiae acetyl-coenzyme A synthetase encoded by the ACS1 gene, but not the ACS2-encoded enzyme, is subject to glucose catabolite inactivation. FEMS Microbiol Lett 153:75–81

    Article  Google Scholar 

  6. De Virgilio C, Bürckert N, Barth G, Neuhaus JM, Boller T, Wiemken A (1992) Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. Yeast 8:1043–1051

    Article  Google Scholar 

  7. Deken DRH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156

    Google Scholar 

  8. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  Google Scholar 

  9. Dürre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49:639–648

    Article  Google Scholar 

  10. Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73:7814–7818

    Article  CAS  Google Scholar 

  11. Hiser L, Basson ME, Rine J (1994) ERG10 from Saccharomyces cerevisiae encodes acetoacetyl-CoA thiolase. J Biol Chem 269:31383–31389

    CAS  Google Scholar 

  12. Ichii T, Takehara S, Konno H, Ishida T, Sato H, Suzuki A, Yamazumi K (1993) Development of a new commercial-scale airlift fermentor for rapid growth of yeast. J Ferment Bioeng 75:375–379

    Article  CAS  Google Scholar 

  13. Ikushima S, Fujii T, Kobayashi O (2009a) Efficient gene disruption in the high-ploidy yeast Candida utilis using the Cre-loxP system. Biosci Biotechnol Biochem 73:879–884

    Article  CAS  Google Scholar 

  14. Ikushima S, Fujii T, Kobayashi O, Yoshida S, Yoshida A (2009b) Genetic engineering of Candida utilis yeast for efficient production of L-lactic acid. Biosci Biotechnol Biochem 73:1818–1824

    Article  CAS  Google Scholar 

  15. Inokuma K, Liao JC, Okamoto M, Hanai T (2010) Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J Biosci Bioeng 110:696–701

    Article  CAS  Google Scholar 

  16. Ismaiel AA, Zhu CX, Colby GD, Chen JS (1993) Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J Bacteriol 16:5097–5105

    Google Scholar 

  17. Jojima T, Inui M, Yukawa H (2008) Production of isopropanol by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:1219–1224

    Article  CAS  Google Scholar 

  18. Kondo K, Miura Y, Sone H, Kobayashi K, Iijima H (1997) High-level expression of a sweet protein, monellin, in the food yeast Candida utilis. Nat Biotechnol 15:453–457

    Article  CAS  Google Scholar 

  19. Li Y, Wei G, Chen J (2004) Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol 66:233–242

    Article  CAS  Google Scholar 

  20. Luong A, Hannah VC, Brown MS, Goldstein JL (2000) Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J Biol Chem 275:26458–26466

    Article  CAS  Google Scholar 

  21. Okamura E, Tomita T, Sawa R, Nishiyama M, Kuzuyama T (2010) Unprecedented acetoacetyl-coenzyme: a synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Proc Natl Acad Sci U S A 107:11265–11270

    Article  CAS  Google Scholar 

  22. Petersen DJ, Bennett GN (1990) Purification of acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824 and cloning of the acetoacetate decarboxylase gene in Escherichia coli. Appl Environ Microbiol 56:3491–3498

    CAS  Google Scholar 

  23. Postma E, Verduyn C, Scheffers WA, Van Dijken JP (1989) Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55:468–477

    CAS  Google Scholar 

  24. Schmitt HD, Zimmermann FK (1982) Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. J Bacteriol 151:1146–1152

    CAS  Google Scholar 

  25. Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC (2002) Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390–2392

    Article  CAS  Google Scholar 

  26. Tamakawa H, Ikushima S, Yoshida S (2011) Ethanol production from xylose by a recombinant Candida utilis strain expressing protein-engineered xylose reductase and xylitol dehydrogenase. Biosci Biotechnol Biochem 75:1994–2000

    Article  CAS  Google Scholar 

  27. Tamakawa H, Ikushima S, Yoshida S (2012) Efficient production of L-lactic acid from xylose by a recombinant Candida utilis strain. J Biosci Bioeng 113:73–75

    Article  CAS  Google Scholar 

  28. Tamakawa H, Ikushima S, Yoshida S (2013) Construction of a Candida utilis strain with ratio-optimized expression of xylose-metabolizing enzyme genes by cocktail multicopy integration method. J Biosci Bioeng 115:532–539

    Article  CAS  Google Scholar 

  29. Tomita Y, Ikeo K, Tamakawa H, Gojobori T, Ikushima S (2012) Genome and transcriptome analysis of the food-yeast Candida utilis. PLoS One 7:e37226

    Article  CAS  Google Scholar 

  30. Van den Berg MA, Steensma HY (1995) ACS2, a Saccharomyces cerevisiae gene encoding acetyl coenzyme A synthetase, essential for growth on glucose. Eur J Biochem 231:704–713

    Article  Google Scholar 

  31. Wiesenborn DP, Rudolph FB, Papoutsakis ET (1988) Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Appl Environ Microbiol 54:2717–2722

    CAS  Google Scholar 

  32. Wiesenborn DP, Rudolph FB, Papoutsakis ET (1989) Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids. Appl Environ Microbiol 55:323–329

    CAS  Google Scholar 

  33. Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Factories 9:32

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Aruto Yoshida, Dr. Takayoshi Kirisako, Dr. Yasuyuki Tomita, Mr. Toshikazu Tsuji, Ms. Akane Misaizu, Ms. Toshiko Kutsukake, Ms. Yuki Konoeda, and Mr. Yuusei Ikegami for valuable discussions and technical assistance throughout the course of this study. Part of this work was financed by the New Energy and Industrial Technology Development Organization (NEDO), Tokyo, Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Tamakawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tamakawa, H., Mita, T., Yokoyama, A. et al. Metabolic engineering of Candida utilis for isopropanol production. Appl Microbiol Biotechnol 97, 6231–6239 (2013). https://doi.org/10.1007/s00253-013-4964-0

Download citation

Keywords

  • Isopropanol
  • Candida utilis
  • Clostridium acetobutylicum
  • Clostridium beijerinckii
  • Metabolic engineering