Skip to main content
Log in

Comparative characterization of recombinant ZZ protein–alkaline phosphatase and its application in enzyme immunoassays

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A functional fusion protein, which consists of an antibody and an enzyme that can be used in enzyme immunoassays, has been constructed. However, a quantitative comparison of the characteristics of fusion proteins and chemical conjugates of the parents, which are functionally produced in a uniform microbial system, has not been adequately achieved. In this study, a fusion protein between the ZZ protein and Escherichia coli alkaline phosphatase (AP) and the parental ZZ protein and AP for chemical conjugate was functionally produced in the same bacterial system. A detailed examination of the ZZ–AP fusion protein and the effect of the ZZ–AP chemical conjugate on IgG affinity and enzymatic activity were performed. Compared with the parents, the equilibrium dissociation constant of ZZ–AP conjugate decreased by 32 % and catalytic activity decreased by 24 %, whereas the ZZ–AP fusion retained full parental activities and exhibited an approximately tenfold higher sensitivity than that of ZZ–AP conjugate in enzyme-linked immunosorbent assay. Thus, ZZ–AP fusion is a promising immunoreagent for IgG detection and a potential biolinker between antibodies and reporter enzymes (i.e., IgG–ZZ–AP fusion complex) in immunoassays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angkawidjaja C, Kuwahara K, Omori K, Koga Y, Takano K, Kanaya S (2006) Extracellular secretion of Escherichia coli alkaline phosphatase with a C-terminal tag by type I secretion system: purification and biochemical characterization. Protein Eng Des Sel 19:337–343. doi:10.1093/protein/gzl017

    Article  CAS  Google Scholar 

  • Chattopadhaya S, Abu Bakar FB, Yao SQ (2009) Expanding the chemical biologist’s tool kit: chemical labelling strategies and its applications. Curr Med Chem 16:4527–4543. doi:10.2174/092986709789760706

    Article  CAS  Google Scholar 

  • Chowdhury PS, Kushwaha A, Abrol S, Chaudhary VK (1994) An expression system for secretion and purification of a genetically engineered thermostable chimera of protein A and alkaline phosphatase. Protein Expr Purif 5:89–95

    Article  CAS  Google Scholar 

  • Grigorenko V, Andreeva I, Börchers T, Spener F, Egorov A (2001) A genetically engineered fusion protein with horseradish peroxidase as a marker enzyme for use in competitive immunoassays. Anal Chem 73:1134–1139. doi:10.1021/ac000684t

    Article  CAS  Google Scholar 

  • Huang B, Liu FF, Dong XY, Sun Y (2012) Molecular mechanism of the effects of salt and pH on the affinity between protein A and human immunoglobulin G1 revealed by molecular simulations. J Phys Chem B 116:424–433. doi:10.1021/jp205770p

    Article  CAS  Google Scholar 

  • Iijima M, Kadoya H, Hatahira S, Hiramatsu S, Jung G, Martin A, Quinn J, Jung J, Jeong SY, Choi EK, Arakawa T, Hinako F, Kusunoki M, Yoshimoto N, Niimi T, Tanizawa K, Kuroda S (2011) Nanocapsules incorporating IgG Fc-binding domain derived from Staphylococcus aureus protein A for displaying IgGs on immunosensor chips. Biomaterials 32:1455–1464. doi:10.1016/j.biomaterials.2010.10.057

    Article  CAS  Google Scholar 

  • Jansson B, Uhlen M, Nygren PA (1998) All individual domains of staphylococcal protein A show Fab binding. FEMS Immunol Med Microbiol 20:69–78. doi:10.1016/S0928-824

    Article  CAS  Google Scholar 

  • Jendeberg L, Tashiro M, Tejero R, Lyons BA, Uhlén M, Montelione GT, Nilsson B (1996) The mechanism of binding staphylococcal protein A to immunoglobin G does not involve helix unwinding. Biochemistry 35:22–31. doi:10.1021/bi9512814

    Article  CAS  Google Scholar 

  • Kerschbaumer RJ, Hirschl S, Schwager C, Ibl M, Himmler G (1996) pDAP2: a vector for construction of alkaline phosphatase fusion-proteins. Immunotechnology 2:145–150

    Article  CAS  Google Scholar 

  • Kerschbaumer RJ, Hirschl S, Kaufmann A, Ibl M, Koenig R, Himmler G (1997) Single-chain Fv fusion proteins suitable as coating and detecting reagents in a double antibody sandwich enzyme-linked immunosorbent assay. Anal Biochem 249:219–227. doi:10.1006/abio.1997.2171

    Article  CAS  Google Scholar 

  • Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51:2415–2418. doi:10.1373/clinchem.2005.051532

    Article  CAS  Google Scholar 

  • Liu X, Wang H, Liang Y, Yang J, Zhang H, Lei H, Shen Y, Sun Y (2010) Production and characterization of a single-chain Fv antibody-alkaline phosphatase fusion protein specific for clenbuterol. Mol Biotechnol 45:56–64. doi:10.1007/s12033-010-9240-2

    Article  CAS  Google Scholar 

  • Nilsson B, Moks T, Jansson B, Abrahmsen L, Elmblad A, Holmgren E, Henrichson C, Jones TA, Uhlen M (1987) A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng 1:107–113. doi:10.1093/protein/1.2.107

    Article  CAS  Google Scholar 

  • Porstmann T, Kiessig ST (1992) Enzyme-immunoassay techniques: an overview. J Immunol Methods 150:5–21

    Article  CAS  Google Scholar 

  • Rau D, Kramer K, Hock B (2002) Single-chain Fv antibody-alkaline phosphatase fusion proteins produced by one-step cloning as rapid detection tools for ELISA. J Immunoassay Immunochem 23:129–143. doi:10.1081/IAS-120003657

    Article  CAS  Google Scholar 

  • Rönnmark J, Kampf C, Asplund A, Höidén-Guthenberg I, Wester K, Pontén F, Uhlén M, Nygren PA (2003) Affibody-β-galactosidase immunoconjugates produced as soluble fusion proteins in the Escherichia coli cytosol. J Immunol Methods 281:149–160. doi:10.1016/j.jim.2003.06.001

    Article  Google Scholar 

  • Sasajima Y, Iwasaki R, Tsumoto K, Kumagai I, Ihara M, Ueda H (2010) Expression of antibody variable region-human alkaline phosphatase fusion proteins in mammalian cells. J Immunol Methods 361:57–63. doi:10.1016/j.jim.2010.07.012

    Article  CAS  Google Scholar 

  • Stec B, Holtz KM, Kantrowitz ER (2000) A revised mechanism for the alkaline phosphatase reaction involving three metal ions. J Mol Biol 299:1303–1311. doi:10.1006/jmbi.2000.3799

    Article  CAS  Google Scholar 

  • Swain MD, Anderson GP, Serrano-González J, Liu JL, Zabetakis D, Goldman ER (2011) Immunodiagnostic reagents using llama single domain antibody-alkaline phosphatase fusion proteins. Anal Biochem 417:188–194. doi:10.1016/j.ab.2011.06.012

    Article  CAS  Google Scholar 

  • Tang J, Liang S, Zhang J, Gao Z, Zhang S (2009) pGreen-S: a clone vector bearing absence of enhanced green fluorescent protein for screening recombinants. Anal Biochem 388:173–174. doi:10.1016/j.ab.2009.02.007

    Article  CAS  Google Scholar 

  • Wang CL, Huang M, Wesson CA, Birdsell DC, Trumble WR (1994) A single Fc binding domain–alkaline phosphatase gene fusion expresses a protein with both IgG binding ability and alkaline phosphatase enzymatic activity. Protein Eng 7:715–722. doi:10.1093/protein/7.5.715

    Article  CAS  Google Scholar 

  • Wang SH, Zhang JB, Zhang ZP, Zhou YF, Yang RF, Chen J, Guo YC, You F, Zhang XE (2006) Construction of single chain variable fragment (ScFv) and BiscFv-alkaline phosphatase fusion protein for detection of Bacillus anthracis. Anal Chem 78:997–1004. doi:10.1021/ac0512352

    Article  CAS  Google Scholar 

  • Wisdom GB (1988) Antibody-enzyme conjugate formation. Methods Mol Biol 3:373–382. doi:10.1385/0-89603-126-8:373

    CAS  Google Scholar 

  • Wisdom GB (2005) Conjugation of antibodies to alkaline phosphatase. Methods Mol Biol 295:123–126. doi:10.1385/1-59259-873-0:123

    CAS  Google Scholar 

  • Zhang XM, Kobatake E, Kobayashi K, Yanagida Y, Aizawa M (2000) Genetically fused protein A-luciferase for immunological blotting analyses. Anal Biochem 282:65–69. doi:10.1006/abio.2000.4584

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the following funds: Science & Technology Brainstorm Project of Shandong Province (2008GG10002022); National population and family planning commission of China (C1–90) and National Natural Scientific Foundation of China (81101363).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Jie Mu or Jin-Bao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, JB., Yang, HM., Liang, SJ. et al. Comparative characterization of recombinant ZZ protein–alkaline phosphatase and its application in enzyme immunoassays. Appl Microbiol Biotechnol 97, 153–158 (2013). https://doi.org/10.1007/s00253-012-4303-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4303-x

Keywords

Navigation