Skip to main content
Log in

Enzymatic properties of the glycine d-alanine aminopeptidase of Aspergillus oryzae and its activity profiles in liquid-cultured mycelia and solid-state rice culture (rice koji)

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 27 November 2011

An Erratum to this article was published on 27 November 2011

Abstract

The gdaA gene encoding S12 family glycine–d-alanine aminopeptidase (GdaA) was found in the industrial fungus Aspergillus oryzae. GdaA shares 43% amino acid sequence identity with the d-aminopeptidase of the Gram-negative bacterium Ochrobactrum anthropi. GdaA purified from an A. oryzae gdaA-overexpressing strain exhibited high d-stereospecificity and efficiently released N-terminal glycine and d-alanine of substrates in a highly specific manner. The optimum pH and temperature were 8 to 9 and 40°C, respectively. This enzyme was stable under alkaline conditions at pH 8 to 11 and relatively resistant to acidic conditions until pH 5.0. The chelating reagent EDTA, serine protease inhibitors such as AEBSF, benzamidine, TPCK, and TLCK, and the thiol enzyme inhibitor PCMB inhibited the enzyme. The aminopeptidase inhibitor bestatin did not affect the activity. GdaA was largely responsible for intracellular glycine and d-alanine aminopeptidase activities in A. oryzae during stationary-phase growth in liquid media. In addition, the activity increased in response to the depletion of nitrogen or carbon sources in the growth media, although the GdaA-independent glycine aminopeptidase activity highly increased simultaneously. Aminopeptidases of A. oryzae attract attention because the enzymatic release of a variety of amino acids and peptides is important for the enhancement of the palatability of fermented foods. GdaA activity was found in extracts of a solid-state rice culture of A. oryzae (rice koji), which is widely used as a starter culture for Japanese traditional fermented foods, and was largely responsible for the glycine and d-alanine aminopeptidase activity detected at a pH range of 6 to 9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akao T, Sano M, Yamada O, Akeno T, Fujii K, Goto K, Ohashi-Kunihiro S, Takase K, Yasukawa-Watanabe M, Yamaguchi K, Kurihara Y, Maruyama J, Juvvadi PR, Tanaka A, Hata Y, Koyama Y, Yamaguchi S, Kitamoto N, Gomi K, Abe K, Takeuchi M, Kobayashi T, Horiuchi H, Kitamoto K, Kashiwagi Y, Machida M, Akita O (2007) Analysis of expressed sequence tags from the fungus Aspergillus oryzae cultured under different conditions. DNA Res 14:47–57

    Article  CAS  Google Scholar 

  • Anderson RL, Wolf WJ (1995) Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. J Nutrition 125:581S–588S

    CAS  Google Scholar 

  • Asano Y, Mori T, Hanamoto S, Kato Y, Nakazawa A (1989a) A new d-stereospecific amino acid amidase from Ochrobactrum anthropi. Biochem Biophys Res Commun 162:470–474

    Article  CAS  Google Scholar 

  • Asano Y, Nakazawa A, Kato Y, Kondo K (1989b) Properties of a novel d-stereospecific aminopeptidase from Ochrobactrum anthropi. J Biol Chem 264:14233–14239

    CAS  Google Scholar 

  • Asano Y, Kato Y, Yamada A, Kondo K (1992) Structural similarity of d-aminopeptidase to carboxypeptidase DD and β-lactamases. Biochemistry 31:2316–2328

    Article  CAS  Google Scholar 

  • Blinkovsky AM, Byun T, Brown KM, Golightly EJ, Klotz AV (2000) A non-specific aminopeptidase from Aspergillus. Biochim Biophys Acta 1480:171–181

    Article  CAS  Google Scholar 

  • Bompard-Gilles C, Remaut H, Villeret V, Prangé T, Fanuel L, Delmarcelle M, Joris B, Frère J, Van Beeumen J (2000) Crystal structure of a d-aminopeptidase from Ochrobactrum anthropi, a new member of the ‘penicillin-recognizing enzyme’ family. Structure 8:971–980

    Article  CAS  Google Scholar 

  • Cava F, Lam H, de Pedro MA, Waldor MK (2011) Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cell Mol Life Sci 68:817–831

    Article  CAS  Google Scholar 

  • Cheng YQ, Walton JD (2000) A eukaryotic alanine racemase gene involved in cyclic peptide biosynthesis. J Biol Chem 275:4906–4911

    Article  CAS  Google Scholar 

  • Gonzales T, Robert-Baudouy J (1996) Bacterial aminopeptidases: properties and functions. FEMS Microbiol Rev 18:319–344

    Article  CAS  Google Scholar 

  • Hattori R, Matsushita-Morita M, Marui J, Tada S, Suzuki S, Furukawa I, Yamagata Y, Amano H, Ishida H, Takeuchi M, Kusumoto K (2011) Characterization of an Aspergillus oryzae cysteinyl dipeptidase expressed in Escherichia coli. Biosci Biotechnol Biochem 75:159–161

    Article  CAS  Google Scholar 

  • Hesse SJ, Ruijter GJ, Dijkema C, Visser J (2000) Measurement of intracellular (compartmental) pH by 31P NMR in Aspergillus niger. J Biotechnol 77:5–15

    Article  CAS  Google Scholar 

  • Hoffmann K, Schneider-Scherzer E, Kleinkauf H, Zocher R (1994) Purification and characterization of eucaryotic alanine racemase acting as key enzyme in cyclosporin biosynthesis. J Biol Chem 269:12710–12714

    CAS  Google Scholar 

  • Ito K, Ma X, Azmi N, Huang HS, Fujii M, Yoshimoto T (2003) Novel aminopeptidase specific for glycine from Actinomucor elegans. Biosci Biotechnol Biochem 67:83–88

    Article  CAS  Google Scholar 

  • Kawai M, Okiyama A, Ueda Y (2002) Taste enhancements between various amino acids and IMP. Chem Senses 27:739–745

    Article  CAS  Google Scholar 

  • Kitamoto N, Matsui J, Kawai Y, Kato A, Yoshino S, Ohmiya K, Tsukagoshi N (1998) Utilization of the TEF1-alpha gene (TEF1) promoter for expression of polygalacturonase genes, pgaA and pgaB, in Aspergillus oryzae. Appl Microbiol Biotechnol 50:85–92

    Article  CAS  Google Scholar 

  • Kobayashi T, Abe K, Asai K, Gomi K, Juvvadi P, Kato M, Kitamoto K, Takeuchi M, Machida M (2007) Genomics of Aspergillus oryzae. Biosci Biotechnol Biochem 71:646–670

    Article  CAS  Google Scholar 

  • Kusumoto K, Matsushita-Morita M, Furukawa I, Suzuki S, Yamagata Y, Koide Y, Ishida H, Takeuchi M, Kashiwagi Y (2008) Efficient production and partial characterization of aspartyl aminopeptidase from Aspergillus oryzae. J Appl Microbiol 105:1711–1719

    Article  CAS  Google Scholar 

  • Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K-I, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161

    Article  Google Scholar 

  • Machida M, Yamada O, Gomi K (2008) Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res 15:173–183

    Article  CAS  Google Scholar 

  • Manabe H (1990) Distribution of dipeptides containing d-alanine in Oryza species. Phytochemistry 29:3143–3147

    Article  CAS  Google Scholar 

  • Manabe H (1992) Formations of dipeptides containing d-alanine in wild rice plants. Phytochemistry 31:527–529

    Article  CAS  Google Scholar 

  • Manabe H, Yamauchi M, Ohira K (1981) Studies on d-amino acids in rice plants: behaviors of d-alanylglycine in rice seedlings. Plant Cell Physiol 22:333–336

    CAS  Google Scholar 

  • Marui J, Yoshimi A, Hagiwara D, Fujii-Watanabe Y, Oda K, Koike H, Tamano K, Ishii T, Sano M, Machida M, Abe K (2010) Use of the Aspergillus oryzae actin gene promoter in a novel reporter system for exploring antifungal compounds and their target genes. Appl Microbiol Biotechnol 87:1829–1840

    Article  CAS  Google Scholar 

  • Matsushita-Morita M, Furukawa I, Suzuki S, Yamagata Y, Koide Y, Ishida H, Takeuchi M, Kashiwagi Y, Kusumoto K (2010) Characterization of recombinant prolyl aminopeptidase from Aspergillus oryzae. J Appl Microbiol 109:156–165

    CAS  Google Scholar 

  • Matsushita-Morita M, Tada S, Suzuki S, Hattori R, Marui J, Furukawa I, Yamagata Y, Amano H, Ishida H, Takeuchi M, Kashiwagi Y, Kusumoto K (2011) Overexpression and characterization of an extracellular leucine aminopeptidase from Aspergillus oryzae. Curr Microbiol 62:557–564

    Article  CAS  Google Scholar 

  • Morita H, Okamoto A, Yamagata Y, Kusumoto K, Koide Y, Ishida H, Takeuchi M (2009) Heterologous expression and characterization of CpI, OcpA, and novel serine-type carboxypeptidase OcpB from Aspergillus oryzae. Appl Microbiol Biotechnol 85:335–346

    Article  CAS  Google Scholar 

  • Morita H, Kuriyama K, Akiyama N, Okamoto A, Yamagata Y, Kusumoto K, Koide Y, Ishida H, Takeuchi M (2010) Molecular cloning of ocpO encoding carboxypeptidase O of Aspergillus oryzae IAM2640. Biosci Biotechnol Biochem 74:1000–1006

    Article  CAS  Google Scholar 

  • Morita H, Abo H, Okamoto A, Maeda H, Yamagata Y, Kusumoto K, Amano H, Ishida H, Takeuchi M (2011) Enzymatic properties of the recombinant serine-type carboxypeptidase OcpC, which is unique to Aspergillus oryzae. Biosci Biotechnol Biochem 75:662–668

    Article  CAS  Google Scholar 

  • Nagata Y, Akino T, Ohno K (1985) Microdetermination of serum d-amino acids. Anal Biochem 150:238–242

    Article  CAS  Google Scholar 

  • Nakadai T, Nasuno S (1977) Purification and properties of leucine aminopeptidase IV from Aspergillus oryzae. Agr Biol Chem 41:1657–1666

    Article  CAS  Google Scholar 

  • Nakadai T, Nasuno S, Iguchi N (1973a) Purification and properties of leucine aminopeptidase I from Aspergillus oryzae. Agr Biol Chem 37:757–765

    Article  CAS  Google Scholar 

  • Nakadai T, Nasuno S, Iguchi N (1973b) Purification and properties of leucine aminopeptidase II from Aspergillus oryzae. Agr Biol Chem 37:767–774

    Article  CAS  Google Scholar 

  • Nakadai T, Nasuno S, Iguchi N (1973c) Purification and properties of leucine aminopeptidase III from Aspergillus oryzae. Agr Biol Chem 37:775–782

    Article  CAS  Google Scholar 

  • Nishimura T, Kato H (1988) Taste of free amino acids and peptides. Food Rev Int 4:175–194

    Article  Google Scholar 

  • Schomburg I, Schomburg D (eds) (2002) Springer handbook of enzymes, vol. 6. Class 3.4 hydrolases I. Springer, Berlin

  • Shitomi H, Ikeda T (1974) A study of rice bran mash with glycine (in Japanese). Bulletin Seitoku Gakuen Junior College for Women 7:19–29

    Google Scholar 

  • Sohi H, Sultana Y, Khar RK (2004) Taste masking technologies in oral pharmaceuticals: recent developments and approaches. Drug Dev Ind Pharm 30:429–448

    Article  CAS  Google Scholar 

  • Suda H, Aoyagi T, Takeuchi T, Umezawa H (1976) Inhibition of aminopeptidase B and leucine aminopeptidase by bestatin and its stereoisomer. Arch Biochem Biophys 177:196–200

    Article  CAS  Google Scholar 

  • Taylor A (1993) Aminopeptidases: structure and function. FASEB J 7:290–298

    CAS  Google Scholar 

  • Umezawa H, Aoyagi T, Suda H, Hamada M, Takeuchi T (1976) Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J Antibiot (Tokyo) 29:97–99

    CAS  Google Scholar 

  • Wada A, Isobe Y, Yamaguchi S, Yamaoka R, Ozaki M (2001) Taste-enhancing effects of glycine on the sweetness of glucose: a gustatory aspect of symbiosis between the ant, Camponotus japonicus, and the larvae of the lycaenid butterfly, Niphanda fusca. Chem Senses 26:983–992

    Article  CAS  Google Scholar 

  • Wang B, Guo G, Wang C, Lin Y, Wang X, Zhao M, Guo Y, He M, Zhang Y, Pan L (2010) Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Res 38:5075–5087

    Article  CAS  Google Scholar 

  • Watanabe J, Tanaka H, Akagawa T, Mogi Y, Yamazaki T (2007) Characterization of Aspergillus oryzae aspartyl aminopeptidase expressed in Escherichia coli. Biosci Biotechnol Biochem 71:2557–2560

    Article  CAS  Google Scholar 

  • Yamauchi M, Ohashi T, Ohira K (1979) Occurrence of d-alanylglycine in rice leaf blades. Plant Cell Physiol 20:671–673

    CAS  Google Scholar 

  • Yoon J, Maruyama J, Kitamoto K (2011) Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins. Appl Microbiol Biotechnol 89:747–759

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Program for Promotion of Basic Research for Innovative Bioscience (PROBRAIN). We would like to thank Dr. Yoshio Tanaka at Amano Enzyme Inc. for the helpful discussions and support for the peptide hydrolysis analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-Ichi Kusumoto.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00253-011-3690-8

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 53.2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marui, J., Matsushita-Morita, M., Tada, S. et al. Enzymatic properties of the glycine d-alanine aminopeptidase of Aspergillus oryzae and its activity profiles in liquid-cultured mycelia and solid-state rice culture (rice koji). Appl Microbiol Biotechnol 93, 655–669 (2012). https://doi.org/10.1007/s00253-011-3610-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3610-y

Keywords

Navigation