Skip to main content
Log in

Efficient secretion of Bacillus subtilis lipase A in Saccharomyces cerevisiae by translational fusion to the Pir4 cell wall protein

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Both the secretion and the cell surface display of Bacillus subtilis lipase A (Lip A) in Saccharomyces cerevisiae was investigated using different domains of the cell wall protein Pir4 as translational fusion partners. LipA gene minus its leader peptide was fused inframe in two places of PIR4 to achieve cell wall targeting, or substituting most of the PIR4 sequence, after the signal peptide and the Kex2 processed subunit I of Pir4 to achieve secretion to the growth medium. Expression of the recombinant fusion proteins was investigated in a standard and a glycosylation-deficient strain of S. cerevisiae, grown in selective or rich medium. Fusion proteins intended to be retained at the cell wall were secreted to the growth medium, most likely as result of the degradation of the Pir4 moiety containing the cell wall retention domain, giving low levels of lipase activity. However, the fusion intended for secretion was efficiently secreted in a percentage of close to 90% and remained stable even in rich medium at high cell density cultures, yielding values of over 400 IU of lipase activity per milliliter of cell supernatant. This is, to our knowledge, the first report of the efficient production, as a secreted protein, of lipase A of B. subtilis in baker’s yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn JO, Jang HW, Lee HW, Choi ES, Haam SJ, Oh TK, Jung JK (2003) Overexpression of thermoalkalophilic lipase from Bacillus stearothermophilus L1 in Saccharomyces cerevisiae. J Microbiol Biotechnol 13:451–456

    CAS  Google Scholar 

  • Ahn JO, Choi ES, Lee HW, Hwang SH, Kim CS, Jang HW, Haam SJ, Jung JK (2004) Enhanced secretion of Bacillus stearothermophilus L1 lipase in Saccharomyces cerevisiae by translational fusion to cellulose-binding domain. Appl Microbiol Biotechnol 64:833–839

    Article  CAS  Google Scholar 

  • Anderson JA (1939) The use of tributyrin agar in dairy bacteriology. Ber 3 Int Mikrobiol Kongress 3:726–728

    Google Scholar 

  • Andrés I, Zueco J, Parascandola P (2003) Immobilization of Saccharomyces cerevisiae cells to protein G-Sepharose by cell wall engineering. J Mol Microbiol Biotechnol 5:161–166

    Article  Google Scholar 

  • Andrés I, Gallardo O, Parascandola P, Pastor FIJ, Zueco J (2005) Use of cell wall protein Pir4 as a fusion partner for the expresión of Bacillus sp. BP-7 xylanase A in Saccharomyces cerevisiae. Biotech Bioeng 89:690–697

    Article  Google Scholar 

  • Andrés I, Rodríguez-Díaz J, Buesa J, Zueco J (2006) Yeast expresión of the VP8* fragment of the rotavirus spike protein and its use as immunogen in mice. Biotechnol Bioeng 93:89–98

    Article  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 1343:177–183

    Article  Google Scholar 

  • Borch J, Jensen B (1997) Effect and functionality of lipases in dough and bread. DANISCO Ingredients, Denmark. VII Meeting on Industrial Applications of Enzymes, Barcelona. Spain

  • Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81

    Article  CAS  Google Scholar 

  • Burnette WN (1981) Western blotting: electrophoretic transfer of proteins from sodium dodecyl-sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Article  CAS  Google Scholar 

  • Dartois V, Baulard A, Schanck K, Colson C (1992) Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168. Biochim Biophys Acta 1131:253–260

    Article  CAS  Google Scholar 

  • Dartois V, Coppée JY, Colson C, Baulard A (1994) Genetic analysis and overexpression of lipolytic activity in Bacillus subtilis. Appl Environ Microbiol 60:1670–1673

    Article  CAS  Google Scholar 

  • Detry J, Rosenbaum T, Lütz S, Hahn D, Jaeger KE, Müller M, Eggert T (2006) Biocatalytic production of enantiopure cyclohexane-trans-1,2-diol using extracellular lipases from Bacillus subtilis. Appl Microbiol Biotechnol 72:1107–1116

    Article  CAS  Google Scholar 

  • Diaz P, Prim N, Pastor FIJ (1999) Direct fluorescence-based lipase activity assay. BioTechniques 27:696–700

    Article  CAS  Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast—Escherichia coli shuttle vector constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    Article  CAS  Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781

    Article  CAS  Google Scholar 

  • Hernandez LM, Ballou L, Alvarado E, Gillece-Castro BL, Burlingame AL, Ballou CE (1989) A new Saccharomyces cerevisiae mnn mutant N-linked oligosaccharide structure. J Biol Chem 246:11846–11856

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    Article  CAS  Google Scholar 

  • Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biochem Biotech 16:396–403

    Article  CAS  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  Google Scholar 

  • Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalists: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the head assembly of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lesuisse E, Schank K, Colson C (1993) Purification and primary characterization of the extracellular lipase of Bacillus subtilis 168, an extreme basic pH tolerant enzyme. Eur J Biochem 216:155–160

    Article  CAS  Google Scholar 

  • Monfort A, Blasco A, Sanz P, Prieto JA (1999) Expression of LIP1 and LIP2 genes from Geotrichum species in baker’s yeast strains and their application to the bread-making. J Agric Food Chem 47:803–808

    Article  CAS  Google Scholar 

  • Moukadiri I, Zueco J (2001) Evidence for the attachment of Hsp150/Pir2 to the cell wall of Saccharomyces cerevisiae through disulfide bridges. FEMS Yeast Res 1:241–245

    CAS  PubMed  Google Scholar 

  • Moukadiri I, Jaafar L, Zueco J (1999) Identification of two mannoproteins released from cell walls of a Saccharomyces cerevisiae mnn1 mnn9 double mutant by reducing agents. J Bacteriol 181:4741–4745

    Article  CAS  Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J et al (1992) The alpha/beta hydrolase fold. Protein Eng 5:197–211

    Article  CAS  Google Scholar 

  • Poutanen K (1997) Enzymes: an important tool in the improvement of the quality of cereal foods. Trends Food Sci Technol 8:300–306

    Article  Google Scholar 

  • Prim N, Blanco A, Martínez J, Pastor FIJ, Diaz P (2000) estA, a gene coding for a cell-bound esterase from Paenibacillus sp. BP-23, is a new member of the bacterial subclass of type B carboxylesterases. Res Microbiol 151:303–312

    Article  CAS  Google Scholar 

  • Prim N, Pastor FIJ, Diaz P (2001) Cloning and characterization of a bacterial cell-bound type B carboxylesterase from Bacillus sp. BP-7. Curr Microbiol 42:237–240

    CAS  PubMed  Google Scholar 

  • Rajakumara E, Acharya P, Ahmad S, Sankaranaryanan R, Rao NM (2008) Structural basis for the remarkable stability of Bacillus subtilis lipase A (Lip A) at low pH. Biochem Biophys Acta 1784:302–311

    CAS  PubMed  Google Scholar 

  • Ruiz C, Pastor FIJ, Díaz P (2003) Isolation and characterization of Bacillus sp. BP-6 LipA, a ubiquitous lipase among mesophilic Bacillus species. Lett Appl Microbiol 37:354–359

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sánchez M, Prim M, Rández-Gil F, Pastor FIJ, Díaz P (2002) Engineering of baker’s yeasts, E.coli and Bacillus hosts for the production of Bacillus subtilis Lipase A. Biotech Bioeng 78:339–345

    Article  Google Scholar 

  • Si QJ (1997) Synergistic effect of enzymes for bread-baking. Cereal Foods World 42:802–807

    CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  Google Scholar 

  • Van Pouderoyen G, Eggert T, Jaeger KE, Dijkstra BW (2001) The crystal structure of Bacillus subtilis: lipase: a minimal α/β hydrolase fold enzyme. J Mol Biol 309:215–226

    Article  Google Scholar 

  • Ying M, Chen G (2007) Study on the production of biodiesel by magnetic cell biocatalyst based on lipase-producing Bacillus subtilis. App Biochem Biotechnol 137–140:793–803

    Google Scholar 

Download references

Acknowledgements

This work was supported by grant ISCIII2006-PI0731 from the Ministerio de Sanidad/Instituto de la Salud Carlos III (Spain). María Mormeneo and Cristina Bofill were recipient of predoctoral grants from the Programa Nacional de Formación de Profesorado Universitario del Ministerio de Educación y Ciencia. Isabel Andrés was the recipient of a predoctoral grant from the Generalitat Valenciana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Zueco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mormeneo, M., Andrés, I., Bofill, C. et al. Efficient secretion of Bacillus subtilis lipase A in Saccharomyces cerevisiae by translational fusion to the Pir4 cell wall protein. Appl Microbiol Biotechnol 80, 437–445 (2008). https://doi.org/10.1007/s00253-008-1549-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1549-4

Keywords

Navigation