Skip to main content

Advertisement

Log in

Strong selection of the TLR2 coding region among the Lagomorpha suggests an evolutionary history that differs from other mammals

  • Short Communication
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) are one of the first lines of defense against pathogens and are crucial for triggering an appropriate immune response. Among TLRs, TLR2 is functional in all vertebrates and has high ability in detecting bacterial and viral pathogen ligands. The mammals’ phylogenetic tree of TLR2 showed longer branches for the Lagomorpha clade, raising the hypothesis that lagomorphs experienced an acceleration of the mutation rate. This hypothesis was confirmed by (i) Tajima’s test of neutrality that revealed different evolutionary rates between lagomorphs and the remaining mammals with lagomorphs presenting higher nucleotide diversity; (ii) genetic distances were similar among lagomorphs and between lagomorphs and other mammals; and (iii) branch models reinforced the existence of an acceleration of the mutation rate in lagomorphs. These results suggest that the lagomorph TLR2 has been strongly involved in pathogen recognition, which probably caused a host-pathogen arms race that led to the observed acceleration of the mutation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Abrantes J, Areal H, Esteves PJ (2013) Insights into the European rabbit (Oryctolagus cuniculus) innate immune system: genetic diversity of the toll-like receptor 3 (TLR3) in wild populations and domestic breeds. BMC Genet 14:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801

    Article  CAS  PubMed  Google Scholar 

  • Alcaide M, Edwards SV (2011) Molecular evolution of the toll-like receptor multigene family in birds. Mol Biol Evol 28(5):1703–1715

    Article  CAS  PubMed  Google Scholar 

  • Andersson DI, Jerlstrom-Hultqvist J and Nasvall J (2015) Evolution of new functions de novo and from preexisting genes. Cold Spring Harb Perspect Biol 7(6)

  • Areal H, Abrantes J, Esteves PJ (2011) Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evol Biol 11:368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awadi A, Ben Slimen H, Smith S, Kahlen J, Makni M, Suchentrunk F (2018) Genetic diversity of the toll-like receptor 2 (TLR2) in hare (Lepus capensis) populations from Tunisia. C R Biol 341(6):315–324

    Article  PubMed  Google Scholar 

  • Beisswanger S, Stephan W (2008) Evidence that strong positive selection drives neofunctionalization in the tandemly duplicated polyhomeotic genes in Drosophila. Proc Natl Acad Sci U S A 105(14):5447–5452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan JJ, Gilmore TD (2018) Evolutionary origins of Toll-like receptor signaling. Mol Biol Evol 35(7):1576–1587

    Article  CAS  PubMed  Google Scholar 

  • Chapman JA, Flux JEC (2008) Introduction to the Lagomorpha. Lagomorph biology: evolution, ecology and conservation. In: Alves PC, Ferrand N, Hackländer K (eds) Springer, pp 1–9

  • Chen C, Zibiao H, Ming Z, Shiyi C, Ruixia L, Jie W, SongJia L (2014) Expression pattern of Toll-like receptors (TLRs) in different organs and effects of lipopolysaccharide on the expression of TLR 2 and 4 in reproductive organs of female rabbit. Dev Comp Immunol 46(2):341–348

    Article  CAS  PubMed  Google Scholar 

  • Christin PA, Spriggs E, Osborne CP, Stromberg CAE, Salamin N, Edwards EJ (2014) Molecular dating, evolutionary rates, and the age of the grasses. Syst Biol 63(2):153–165

    Article  PubMed  Google Scholar 

  • Darfour-Oduro KA, Megens HJ, Roca AL, Groenen MA, Schook LB (2015) Adaptive evolution of Toll-like receptors (TLRs) in the family Suidae. PLoS One 10(4):e0124069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding J, Chang TL (2012) TLR2 activation enhances HIV nuclear import and infection through T cell activation-independent and -dependent pathways. J Immunol 188(3):992–1001

    Article  CAS  PubMed  Google Scholar 

  • Ding YT, Zhou Q, Wang W (2012) Origins of new genes and evolution of their novel functions. Annu Rev Ecol Evol Syst 43:345–363

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esselstyn JA, Oliveros CH, Swanson MT, Faircloth BC (2017) Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements. Genome Biol Evol 9(9):2308–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteves PJ, Abrantes J, Baldauf H-M, BenMohamed L, Chen Y, Christensen N, Gonzalez-Gallego J, Giacani L, Hu J et al (2018) The wide utility of rabbits as models of human diseases. Exp Mol Med 50(5):66

    Article  PubMed Central  CAS  Google Scholar 

  • Fontanesi L, Di Palma F, Flicek P, Smith AT, Thulin CG, Alves PC, Lagomorph Genomics Consortium (2016) LaGomiCs-Lagomorph Genomics Consortium: an international collaborative effort for sequencing the genomes of an entire mammalian order. J Hered 107(4):295–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Fornuskova A, Vinkler M, Pages M, Galan M, Jousselin E, Cerqueira F, Morand S, Charbonnel N, Bryja J et al (2013) Contrasted evolutionary histories of two Toll-like receptors (Tlr4 and Tlr7) in wild rodents (MURINAE). BMC Evol Biol 13:194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grueber CE, Wallis GP, Jamieson IG (2014) Episodic positive selection in the evolution of avian toll-like receptor innate immunity genes. PLoS One 9(3):e89632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guthrie VB, Masica DL, Fraser A, Federico J, Fan YF, Camps M, Karchin R (2018) Network analysis of protein adaptation: modeling the functional impact of multiple mutations. Mol Biol Evol 35(6):1507–1519

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hug H, Mohajeri MH, La Fata G (2018) Toll-like receptors: regulators of the immune response in the human gut. Nutrients 10(2)

  • Hughes AL, Piontkivska H (2008) Functional diversification of the toll-like receptor gene family. Immunogenetics 60(5):249–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jann OC, Werling D, Chang JS, Haig D, Glass EJ (2008) Molecular evolution of bovine Toll-like receptor 2 suggests substitutions of functional relevance. BMC Evol Biol 8:288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kajikawa O, Frevert CW, Lin SM, Goodman RB, Mongovin SM, Wong V, Ballman K, Daubeuf B, Elson G, Martin TR (2005) Gene expression of Toll-like receptor-2, Toll-like receptor-4, and MD2 is differentially regulated in rabbits with Escherichia coli pneumonia. Gene 344:193–202

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650

    Article  CAS  PubMed  Google Scholar 

  • Kingry LC, Petersen JM (2014) Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 4:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar H, Kawai T, Akira S (2009) Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388(4):621–625

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34(7):1812–1819

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lester SN, Li K (2014) Toll-like receptors in antiviral innate immunity. J Mol Biol 426(6):1246–1264

    Article  CAS  PubMed  Google Scholar 

  • Leulier F, Lemaitre B (2008) Toll-like receptors-taking an evolutionary approach. Nat Rev Genet 9(3):165–178

    Article  CAS  PubMed  Google Scholar 

  • Lewis SH, Obbard DJ (2014) Recent insights into the evolution of innate viral sensing in animals. Curr Opin Microbiol 20:170–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthee CA, van Vuuren BJ, Bell D, Robinson TJ (2004) A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene. Syst Biol 53(3):433–447

    Article  PubMed  Google Scholar 

  • Melo-Ferreira J, Lemos de Matos A, Areal H, Lissovsky AA, Carneiro M, Esteves PJ (2015) The phylogeny of pikas (Ochotona) inferred from a multilocus coalescent approach. Mol Phylogenet Evol 84:240–244

    Article  PubMed  Google Scholar 

  • Mukherjee S, Karmakar S, Babu SP (2016) TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. Braz J Infect Dis 20(2):193–204

    Article  PubMed  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neves F, Abrantes J, Almeida T, Costa PP, Esteves PJ (2015a) Evolutionary insights into IL17A in lagomorphs. Mediat Inflamm 2015:367670

    Article  CAS  Google Scholar 

  • Neves F, Abrantes J, Almeida T, de Matos AL, Costa PP, Esteves PJ (2015b) Genetic characterization of interleukins (IL-1alpha, IL-1beta, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs. Innate Immun 21(8):787–801

    Article  CAS  PubMed  Google Scholar 

  • Niedcwiedzka-Rystwej P, Tokarz-Deptula B, Deptula W (2013) The role of Toll-like receptors in viral infections – selected data. Cent Eur J Immunol 38(1):118–121

    Article  CAS  Google Scholar 

  • Oliveira-Nascimento L, Massari P, Wetzler LM (2012) The role of TLR2 in infection and immunity. Front Immunol 3:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, Esteves PJ (2016) An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 68(2):83–107

    Article  CAS  PubMed  Google Scholar 

  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 102(27):9577–9582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang S, Zhong H, Wu X, Wei Q, Zhang H, Chen J, Chen Y, Tang X, Zhang H (2018) Genomic evidence of gene duplication and adaptive evolution of Toll like receptors (TLR2 and TLR4) in reptiles. Int J Biol Macromol 109:698–703

    Article  CAS  PubMed  Google Scholar 

  • Smith SA, Haig D, Emes RD (2014) Novel ovine polymorphisms and adaptive evolution in mammalian TLR2 suggest existence of multiple pathogen binding regions. Gene 540(2):217–225

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1993) Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135(2):599–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tschirren B, Raberg L, Westerdahl H (2011) Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents. J Evol Biol 24(6):1232–1240

    Article  CAS  PubMed  Google Scholar 

  • Vinkler M, Bainova H, Bryja J (2014) Protein evolution of Toll-like receptors 4, 5 and 7 within Galloanserae birds. Genet Sel Evol 46:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K (2015) RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol 32(3):820–832

    Article  CAS  PubMed  Google Scholar 

  • Wlasiuk G, Nachman MW (2010) Adaptation and constraint at Toll-like receptors in primates. Mol Biol Evol 27(9):2172–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wobeser G, Campbell GD, Dallaire A, McBurney S (2009) Tularemia, plague, yersiniosis, and Tyzzer’s disease in wild rodents and lagomorphs in Canada: a review. Can Vet J 50(12):1251–1256

    PubMed  PubMed Central  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Lei M, Xie L, Zhang CX, Zheng J, Yang C, Deng XD, Li JL, Huang DP et al (2014) Detection of polymorphisms and protein domain architectures in rabbit toll-like receptor 2. World Rabbit Sci 22(1):83–90

    Article  Google Scholar 

  • Zhu ZH, Sun YN, Wang RX, Xu TJ (2013) Evolutionary analysis of TLR9 genes reveals the positive selection of extant teleosts in Perciformes. Fish Shellfish Immunol 35(2):448–457

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This article is a result of the project AGRIGEN – NORTE-01-0145-FEDER-000007, supported by Norte Portugal Regional Operational Programme (NORTE2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Fundação para a Ciência e Tecnologia (FCT) supported the FCT Investigator grants of P.J. Esteves (IF/00376/2015) and J. Abrantes (IF/01396/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Esteves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Online Resource 1

(PDF 206 kb)

Online Resource 2

(PDF 67 kb)

Online Resource 3

(PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, F., Águeda-Pinto, A., Pinheiro, A. et al. Strong selection of the TLR2 coding region among the Lagomorpha suggests an evolutionary history that differs from other mammals. Immunogenetics 71, 437–443 (2019). https://doi.org/10.1007/s00251-019-01110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-019-01110-3

Keywords

Navigation