Multiscale nature of cell rearrangement caused by collective cell migration

Abstract

Collective cell migration (CCM), a highly coordinated and fine-tuned migratory mode, is involved in a plethora of biological processes, such as embryogenesis, tissue repair and cancer invasion. Although a good comprehension of how cells collectively migrate by following molecular rules has been generated, the impact of cellular rearrangements on collective migration remains less understood. Thus, considering CCM from a multi-scale quantitative approach could result in a powerful tool to address the contribution of cellular rearrangements in CCM and help to understand this important but still controversial topic. In this work, a review of existing literature in CCM modeling at different scales is given along with assortment of published experimental findings, to invite experimentalists to test given theoretical considerations in multicellular systems. In addition, three different time and space scales (free or weakly connected cells, cluster of cells and collision fronts of different cells clusters) are considered and the multi-scale nature of those processes was discussed with special emphasis of jamming and unjamming states.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alert R, Trepat X (2020) Physical models of collective cell migration. Annu Rev Condens Matter Phys 11:77–101

    Google Scholar 

  2. Atia L, Bi D, Sharma Y, Mitchel JA, Gweon B, Koehler S, DeCamp SJ, Lan B, Hirsch R, Pegoraro AF, Lee KH, Starr J., Weitz DA, Martin AC, Park JA, Butler JP, Fredberg JJ. (2018) Universal geometric constraints during epithelial jamming. Nature Phys 14(6). https://doi.org/10.1038/s41567-018-0089-9

  3. Barriga EH, Mayor R (2019) Adjustable viscoelasticity allows for efficient collective cell migration. Sem Cell Dev Biol 93:55–68

    Google Scholar 

  4. Barriga EH, Franze K, Charras G, Mayor R (2018) Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 554:523–527

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Beck C (2011) Generalized statistical mechanics for superstatistical systems. Phil Trans R Soc A 369:453–465

    PubMed  Google Scholar 

  6. Bent HA (1965) The second law: an introduction to classical and statistical thermodynamics. Oxford University Press, New York

    Google Scholar 

  7. Bi D, Yang X, Marchetti MC, Manning ML (2016) Motility-driven glass and jamming transitions in biological tissues. Phys Rev X 6:021011

    PubMed  PubMed Central  Google Scholar 

  8. Blanchard GB, Fletcher AG, Schumacher LJ (2019) The devil is in the mesoscale: mechanical and behavioural heterogeneity in collective cell movement. Semin Cell Develop Biol 93:46–54

    Google Scholar 

  9. Casas-Vazquez J, Jou D (2003) Temperature in non-equilibrium states: a review of open problems and current proposals. Rep Prog Phys 66:1937–2023

    Google Scholar 

  10. Chen T, Saw TB, Mège RM, Ladoux B (2018) Mechanical forces in cell monolayers. J Cell Sci 131:jcs218156. https://doi.org/10.1242/jcs.218156.

  11. Clark AG, Vignjevic DM (2015) Models of cancer cell invasion and the rule of microenvironment. Curr Opin Cell Biol 36:13–22

    CAS  PubMed  Google Scholar 

  12. Doxzen K, Vedula SRK, Leong MC, Hirata H, Gov NS, Kabla AJ, Ladoux B, Lim CT (2013) Guidance of collective migration by substrate geometry. Integr Biol 5:1026–1035

    CAS  Google Scholar 

  13. Edwards SF (2005) The full canonical ensemble of a granular system. Phys A 353:114–118

    Google Scholar 

  14. Edwards S, Grinev DV (1988) Statistical mechanics of vibration-induced compaction of powders. Phys Rev E 58:4758–4762

    Google Scholar 

  15. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009

    CAS  PubMed  Google Scholar 

  16. Garcia S, Hannezo E, Elgeti J, Joanny JF, Silberzan P, Gov NS (2015) Physics of active jamming during collective cellular motion in a monolayer. PNAS 112(50):15314–15319

    CAS  PubMed  Google Scholar 

  17. Giavazzi F, Paoluzzi M, Macchi M, Bi D, Scita G, Manning LM, Cerbino R, Marchetti CM (2018) Flocking transitions in confluent tissues. Soft Matter 14(18):3471–3477

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gompper G, Winkler RG, Speck T, Solon A, Nardini C, Peruani F, Löwen H, Golestanian R, Kaupp UB, Alvarez L, Kiørboe T, Lauga E, Poon WCK et al (2020) The 2020 motile active matter roadmap. J Phys: Condens Matter 32:193001

    CAS  Google Scholar 

  19. Gonzalez-Cinca R, Folch R, Benitez R, Ramirez-Piscina L, Casademunt J, Hernandez-Machado A (2004) Phase-field models in interfacial pattern formation out of equilibrium. In: Korutcheva E, Cuerno R (eds) Advances in condensed matter and statistical mechanics, chap 9. Nova Science Publishers, pp 203–236

  20. Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69:2013–2016

    CAS  PubMed  Google Scholar 

  21. Guevorkian K, Gonzalez-Rodriguez D, Carlier C, Dufour S, Brochard-Wyart F (2011) Mechanosensitive shivering of model tissues under controlled aspiration. PNAS 108(33):13387–13392

    CAS  PubMed  Google Scholar 

  22. Hampel U, Garreis F, Burgemeister F, Eßel N, Paulsen F (2018) Effect of intermittent shear stress on corneal epithelial cells using an in vitro flow culture model. Ocular Surf 16:341–351

    Google Scholar 

  23. Henkes S, Fily Y, Marchetti MC (2011) Active jamming: self-propelled soft particles at high density. Phys Rev E 84:040301

    Google Scholar 

  24. Iyer KV, Gomez RP, Paijmans J, Julicher F, Eaton S (2019) Epithelial viscoelasticity is regulated by mechanosensitive E-cadherin turnover. Curr Biol 29:1–14

    Google Scholar 

  25. Kalli M, Stylianopoulos T (2018) Defining the role of solid stress and matrix stiffness in cancer cell proliferation and metastasis. Front Oncol. https://doi.org/10.3389/fonc.2018.00055

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634–644

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Khalilgharibi N, Fouchard J, Asadipour N, Yonis A, Harris A, Mosaff P, Fujita Y, Kabla A, Baum B, Muñoz JJ, Miodownik M, Charras G (2019) Stress relaxation in epithelial monolayers is controlled by actomyosin. Nat Phys 15:839–847

    CAS  Google Scholar 

  28. Koride S, Loza AJ, Sun SX (2018) Epithelial vertex models with active biochemical regulation of contractility can explain organized collective cell motility. APL Bioeng 2:031906

    PubMed  PubMed Central  Google Scholar 

  29. Lange JR, Fabry B (2013) Cell and tissue mechanics in cell migration. Exp Cell Res 319:2418–2423

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee P, Wolgemuth CW. (2011) Crawling cells can close wounds without purse strings or signaling. PLoS Comput Biol 7(3):e1002007 1–8.

  31. Lin SZ, Ye S, Xu GK, Li B, Feng XQ (2018) Dynamic migration modes of collective cells. Biophys J 115:1826–1835

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu Z, Tan JL, Cohen DM, Yang MT, Saidecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell–cell junctions. PNAS 107(22):9944–9949

    CAS  PubMed  Google Scholar 

  33. Marmottant P, Mgharbel A, Kafer J, Audren B, Rieu JP, Vial JC, van der Sanden B, Maree AFM, Graner F, Delanoe-Ayari H (2009) The role of fluctuations and stress on the effective viscosity of cell aggregates. PNAS 106(41):17271–17275

    CAS  PubMed  Google Scholar 

  34. Mc Cann C, Kriebel PW, Parent CA, Losert W (2010) Cell speed, persistence and information transmission during signal relay and collective migration. J Cell Sci 123(10):1724–1731

    CAS  Google Scholar 

  35. Mikami T, Yoshida K, Sawada H, Esaki M, Yasumura K, Ono M (2015) Inhibition of Rho-associated kinases disturbs the collective cell migration of stratified TE-10 cells. Biol Res 48:1–15

    Google Scholar 

  36. Mitchel JA, Das A, O’Sullivan MJ, Stancil IT, DeCamp SJ, Koehler S, Ocaña OH, Butler JP, Fredberg JJ, Nieto MA, Bi D, Park JA (2020) In primary airway epithelial cells, the unjamming transition is distinct from the epithelial to mesenchymal transition. Nat Commun 11:5053. https://doi.org/10.1038/s41467-020-18841-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Mombach JCM, Robert D, Graner F, Gillet G, Thomas GL, Idiart M, Rieu JP (2005) Rounding of aggregates of biological cells: experiments and simulations. Phys A 352:525–534

    Google Scholar 

  38. Nnetu KD, Knorr M, Kaes J, Zink M (2012) The impact of jamming on boundaries of collectively moving weak-interacting cells. New J Phys 14:115012

    Google Scholar 

  39. Notbohm J, Banerjee S, Utuje KJC, Gweon B, Jang H, Park Y, Shin J, Butler JP, Fredberg JJ, Marchetti MC (2016) Cellular contraction and polarization drive collective cellular motion. Biophys J 110:2729–2738

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pajic-Lijakovic I (2020) The basic concept of viscoelasticity. In: Pajic-Lijakovic I, Barriga E (eds) Viscoelasticity and collective cell migration, chap 8. Elsevier, New York. ISBN: 9780128203118 (in press)

  41. Pajic-Lijakovic I, Milivojevic M (2017a) Viscoelasticity of multicellular surfaces. J Biomech 60:1–8

    PubMed  Google Scholar 

  42. Pajic-Lijakovic I, Milivojevic M (2017b) Successive relaxation cycles during long-time cell aggregate rounding after uni-axial compression. J Biol Phys 43:197–209

    PubMed  PubMed Central  Google Scholar 

  43. Pajic-Lijakovic I, Milivojevic M (2019a) Long-time viscoelasticity of multicellular surfaces caused by collective cell migration – multi-scale modeling considerations. Semin Cell Dev Biol 93:87–96

    PubMed  Google Scholar 

  44. Pajic-Lijakovic I, Milivojevic M (2019b) Functional epithelium remodeling in response to applied stress under in vitro conditions. Appl Bionics Biomech. https://doi.org/10.1155/2019/4892709

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pajic-Lijakovic I, Milivojevic M (2019c) Jamming state transition and collective cell migration. J Biol Eng 13(73):1–12

    CAS  Google Scholar 

  46. Pajic-Lijakovic I, Milivojevic M (2020a) Viscoelasticity of multicellular systems caused by collective cell migration: dynamics at the biointerface. Eur Biophys J 49:253–265

    CAS  PubMed  Google Scholar 

  47. Pajic-Lijakovic I, Milivojevic M (2020b) Collective cell migration and residual stress accumulation: rheological consideration. J Biomech 108:109898. https://doi.org/10.1016/j.jbiomech.2020.109898

    Article  PubMed  Google Scholar 

  48. Pajic-Lijakovic I, Milivojevic M (2020c) Mechanical oscillations in 2D collective cell migration: the elastic turbulence. Front Phys. https://doi.org/10.3389/fphy.2020.585681

  49. Petridou NI, Heisenberg CP (2019) Tissue rheology in embryonic organization. EMBO J 38(e102497):1–13

    Google Scholar 

  50. Petrungaro G, Morelli L, Uriu K (2019) Information flow in the presence of cell mixing and signaling delays during embryonic development. Semin Cell Dev Biol 93:26–35

    PubMed  Google Scholar 

  51. Pinheiro D, Bellaiche Y (2018) Mechanical force-driven adherens junction remodeling and epithelial dynamics. Dev Cell 47:1–19

    Google Scholar 

  52. Pitenis AA, Urueña JM, Hart SM, O’Bryan CS, Marshall SL, Levings PP, Angelini TE, Sawyer WG (2018) Friction-induced inflammation. Tribol Lett 66–81

  53. Podlubny I (1999) Fractional differential equations, mathematics in science and engineering. Lond Acad Press 198:78

    Google Scholar 

  54. Röper K (2013) Supracellular actomyosin assemblies during development. BioArchitecture 3(2):45–49

    PubMed  PubMed Central  Google Scholar 

  55. Sato K, Watanabe T, Wang S, Kakeno M, Matsuzawa K, Matsui T, Yokoi K, Murase K, Sugiyama I, Ozawa M, Kaibuchi K (2011) Numb controls E-cadherin endocytosis through p120 catenin with aPKC. Mol Biol Cell 22:3103–3119

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Serra-Picamal X, Conte V, Vincent R, Anon E, Tambe DT, Bazellieres E, Butler JP, Fredberg JJ, Trepat X (2012) Mechanical waves during tissue expansion. Nat Phys 8:628–634

    CAS  Google Scholar 

  57. Shellard A, Mayor R (2019) Supracellular migration—beyond collective cell migration. J Cell Sci 132:jcs226142

  58. Shellard A, Szabó A, Trepat X, Mayor R (2018) Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis. Science 362:339–343

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Srivastava N, Kay RR, Kabla AJ (2017) Method to study cell migration under uniaxial compression. Mol Biol Cell 28:809–816

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sussman DM, Merkel M (2018) No unjamming transition in a Voronoi model of biological tissue. Soft Matter 14:3397–3403

    CAS  PubMed  Google Scholar 

  61. Tambe DT, Croutelle U, Trepat X, Park CY, Kim JH, Millet E, Butler JP, Fredberg JJ (2013) Monolayer stress microscopy: limitations, artifacts, and accuracy of recovered intercellular stresses. PLoS ONE 8(2):e55172 1–13

  62. Tlili S, Gauquelin E, Li B, Cardoso O, Ladoux B, Delanoë-Ayari H, Graner F (2018) Collective cell migration without proliferation: density determines cell velocity and wave velocity. R Soc Open Sci 5:172421. https://doi.org/10.1098/rsos.172421

    Article  PubMed  PubMed Central  Google Scholar 

  63. Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ (2009) Physical forces during collective cell migration. Nat Phys 5:426–430

    CAS  Google Scholar 

  64. Troyanovsky RB, Sokolov EP, Troyanovsky SM (2006) Endocytosis of cadherin from intracellular junctions is the driving force for cadherin adhesive dimer disassembly. Mol Biol Cell 17:3484–3493

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y, Jain RK et al (2012) Mechanical compression drives cancer cells toward invasive phenotype. PNAS 109(3):911–916

    CAS  PubMed  Google Scholar 

  66. Volfson D, Cookson S, Hasty J, Tsimring LS (2008) Biomechanical ordering of dense cell populations. PNAS 105(40):15346–15351

    PubMed  Google Scholar 

  67. Vourc’h T, Leopolde`s J, Peerhossaini H. (2020) Light control of the diffusion coefficient of active fluids. J Fluids Eng 142:031109–1

  68. Zhang J, Chada NC, Reinhart-King CA (2019) Microscale interrogation of 3D tissue mechanics. Front Bioeng Biotechnol 7:412

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-68/2020-14/200135).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivana Pajic-Lijakovic.

Ethics declarations

Conflict of interest

We have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pajic-Lijakovic, I., Milivojevic, M. Multiscale nature of cell rearrangement caused by collective cell migration. Eur Biophys J 50, 1–14 (2021). https://doi.org/10.1007/s00249-021-01496-7

Download citation

Keywords

  • Collective cell migration
  • Cell speed
  • Viscoelasticity of cellular domains
  • Residual stress accumulation
  • Jamming state transition