Kinetics of irreversible pore formation under constant electrical tension in giant unilamellar vesicles

Abstract

Stretching in the plasma membranes of cells and lipid membranes of vesicles plays important roles in various physiological and physicochemical phenomena. Irreversible electroporation (IRE) is a minimally invasive non-thermal tumor ablation technique where a series of short electrical energy pulses with high frequency is applied to destabilize the cell membranes. IRE also induces lateral tension due to stretching in the membranes of giant unilamellar vesicles (GUVs). Here, the kinetics of irreversible pore formation under constant electrical tension in GUVs has been investigated. The GUVs are prepared by a mixture of dioleoylphosphatidylglycerol and dioleoylphosphatidylcholine using the natural swelling method. An IRE signal of frequency 1.1 kHz is applied to the GUVs through a gold-coated electrode system. Stochastic pore formation is observed for several ‘single GUVs’ at a particular constant tension. The time course of the fraction of intact GUVs among all the examined GUVs is fitted with a single-exponential decay function from which the rate constant of pore formation in the vesicle, kp, is calculated. The value of kp increases with an increase of membrane tension. An increase in the proportion of negatively charged lipids in a membrane gives a higher kp. Theoretical equations are fitted to the tension-dependent kp and to the probability of pore formation, which allows us to obtain the line tension of the membranes. The decrease in the energy barrier for formation of the nano-size nascent or prepore state, due to the increase in electrical tension, is the main factor explaining the increase of kp.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Change history

  • 26 June 2020

    Due to wrong coding usage, the

References

  1. Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pastushenko VF, Tarasevich, MP (1979) Electric breakdown of bilayer lipid membranes: I. The main experimental facts and their qualitative discussion. J Electroanal Chem Interfacial Electrochem 104:37–52. https://doi.org/10.1016/S0022-0728(79)81006-2

    Article  Google Scholar 

  2. Akimov SA, Volynsky PE, Galimzyanov TR, Kuzmin PI, Pavlov KV, Batishchev OV (2017a) Pore formation in lipid membrane II: Energy landscape under external stress. Sci Rep 7:12509. https://doi.org/10.1038/s41598-017-12749-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Akimov SA, Volynsky PE, Galimzyanov TR, Kuzmin PI, Pavlov KV, Batishchev OV (2017b) Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci Rep 7:12152. https://doi.org/10.1038/s41598-017-12127-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Al-Sakere B, André F, Bernat C, Connault E, Opolon P, Davalos RV, Rubinsky B, Mir LM (2007) Tumor ablation with irreversible electroporation. PLoS ONE 2:e1135. https://doi.org/10.1371/journal.pone.0001135

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Cunill-Semanat E, Salgado J (2019) Spontaneous and stress-induced pore formation in membranes: theory, experiments and simulations. J Membrane Biol 252:241–260. https://doi.org/10.1007/s00232-019-00083-4

    CAS  Article  Google Scholar 

  6. Dimova R, Bezlyepkina N, Jordö MD, Knorr RL, Riske KA, Staykova M, Vlahovska PM, Yamamoto T, Yang P, Lipowsky R (2009) Vesicles in electric fields: some novel aspects of membrane behavior. Soft Matter 5:3201. https://doi.org/10.1039/b901963d

    CAS  Article  Google Scholar 

  7. Dimova R, Riske KA, Aranda S, Bezlyepkina N, Knorr RL, Lipowsky R (2007) Giant vesicles in electric fields. Soft Matter 3:817. https://doi.org/10.1039/b703580b

    CAS  Article  Google Scholar 

  8. Evans E, Heinrich V, Ludwig F, Rawicz W (2003) Dynamic tension spectroscopy and strength of biomembranes. Biophys J 85:2342–2350. https://doi.org/10.1016/S0006-3495(03)74658-X

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Evans E, Smith BA (2011) Kinetics of hole nucleation in biomembrane rupture. New J Phys 13:095010. https://doi.org/10.1088/1367-2630/13/9/095010

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gardiner CW (2009) Handbook of stochastic methods for physics, chemistry, and the natural sciences, 4th edn. Springer-Verlag, Berlin

    Google Scholar 

  11. Grosse C, Schwan HP (1992) Cellular membrane potentials induced by alternating fields. Biophys J 63:1632–1642. https://doi.org/10.1016/S0006-3495(92)81740-X

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Hasan M, Karal MAS, Levadnyy V, Yamazaki M (2018) Mechanism of initial stage of pore formation induced by antimicrobial peptide magainin 2. Langmuir 34:3349–3362. https://doi.org/10.1021/acs.langmuir.7b04219

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Hänggi P, Talkner P, Borkovec M (1990) Reaction-rate theory: fifty years after Kramers. Rev Mod Phys 62:251–341. https://doi.org/10.1103/RevModPhys.62.251

    Article  Google Scholar 

  14. Islam MZ, Alam JM, Tamba Y, Karal MAS, Yamazaki M (2014) The single GUV method for revealing the functions of antimicrobial, pore-forming toxin, and cell-penetrating peptides or proteins. Phys Chem Chem Phys 16:15752–15767. https://doi.org/10.1039/c4cp00717d

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Israelachvili JN (2011) Intermolecular and Surface Forces, 3rd edn. Academic press, Amsterdam

    Google Scholar 

  16. Kampen NG van (2007) Stochastic processes in physics and chemistry, 3rd edn. North Holland, Amsterdam

    Google Scholar 

  17. Karal MAS, Levadnyy V, Tsuboi T-A, Belaya M, Yamazaki M (2015a) Electrostatic interaction effects on tension-induced pore formation in lipid membranes. Phys Rev E 92:012708. https://doi.org/10.1103/PhysRevE.92.012708

    CAS  Article  Google Scholar 

  18. Karal MAS, Alam JM, Takahashi T, Levadny V, Yamazaki M (2015b) Stretch-activated pore of the antimicrobial peptide, magainin 2. Langmuir 31:3391–3401. https://doi.org/10.1021/la503318z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Karal MAS, Levadnyy V, Yamazaki M (2016) Analysis of constant tension-induced rupture of lipid membranes using activation energy. Phys Chem Chem Phys 18:13487–13495. https://doi.org/10.1039/C6CP01184E

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Karal MAS, Ahamed MK, Rahman M, Ahmed M, Shakil MM, Rabbani KS (2019a) Effects of electrically-induced constant tension on giant unilamellar vesicles using irreversible electroporation. Eur Biophys J 48:731–741. https://doi.org/10.1007/s00249-019-01398-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Karal MAS, Rahman M, Ahamed MK, Shibly SUA, Ahmed M, Shakil MM (2019b) Low cost non-electromechanical technique for the purification of giant unilamellar vesicles. Eur Biophys J. https://doi.org/10.1007/s00249-019-01363-6

    Article  PubMed  PubMed Central  Google Scholar 

  22. Karal MAS, Ahmed M, Levadny V, Belaya M, Ahamed MK, Rahman M, Shakil MM (2020a) Electrostatic interaction effects on the size distribution of self-assembled giant unilamellar vesicles. Phys Rev E 101:012404. https://doi.org/10.1103/PhysRevE.101.012404

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Karal MAS, Islam MK, Mahbub ZB (2020b) Study of molecular transport through a single nanopore in the membrane of a giant unilamellar vesicle using COMSOL simulation. Eur Biophys J 49:59–69. https://doi.org/10.1007/s00249-019-01412-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Karal MAS, Yamazaki M (2015) Communication: Activation energy of tension-induced pore formation in lipid membranes. J Chem Phys 143:081103. https://doi.org/10.1063/1.4930108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Karatekin E, Sandre O, Guitouni H, Borghi N, Puech P-H, Brochard-Wyart F (2003) Cascades of transient pores in giant vesicles: line tension and transport. Biophys J 84:1734–1749. https://doi.org/10.1016/S0006-3495(03)74981-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Levadny V, Tsuboi T, Belaya M, Yamazaki M (2013) Rate constant of tension-induced pore formation in lipid membranes. Langmuir 29:3848–3852. https://doi.org/10.1021/la304662p

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Levina N (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737. https://doi.org/10.1093/emboj/18.7.1730

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Lisin R, Zion Ginzburg B, Schlesinger M, Feldman Y (1996) Time domain dielectric spectroscopy study of human cells. I. Erythrocytes and ghosts. Biochimica Biophys Acta (BBA) Biomembranes 1280:34–40. https://doi.org/10.1016/0005-2736(95)00266-9

    Article  Google Scholar 

  29. Marsh D (1996) Intrinsic curvature in normal and inverted lipid structures and in membranes. Biophys J 70:2248–2255. https://doi.org/10.1016/S0006-3495(96)79790-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Meier W, Graff A, Diederich A, Winterhalter M (2000) Stabilization of planar lipid membranes: a stratified layer approach. Phys Chem Chem Phys 2:4559–4562. https://doi.org/10.1039/B004073H

    CAS  Article  Google Scholar 

  31. Miller L, Leor J, Rubinsky B (2005) Cancer cells ablation with irreversible electroporation. Technol Cancer Res Treat 4:699–705. https://doi.org/10.1177/153303460500400615

    Article  PubMed  PubMed Central  Google Scholar 

  32. Needham D, Hochmuth RM (1989) Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys J 55:1001–1009. https://doi.org/10.1016/S0006-3495(89)82898-X

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Orlowski S, Mir LM (1993) Cell electropermeabilization: a new tool for biochemical and pharmacological studies. Biochimica Biophys Acta Rev Biomembranes 1154:51–63. https://doi.org/10.1016/0304-4157(93)90016-H

    CAS  Article  Google Scholar 

  34. Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79:328–339

    CAS  Article  Google Scholar 

  35. Riske KA, Dimova R (2005) Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys J 88:1143–1155. https://doi.org/10.1529/biophysj.104.050310

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Roy SK, Karal MAS, Kadir MA, Rabbani KS (2019) A new six-electrode electrical impedance technique for probing deep organs in the human body. Eur Biophys J 48:711–719. https://doi.org/10.1007/s00249-019-01396-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Sachs F (2010) Stretch-activated ion channels: what are they? Physiology 25:50–56. https://doi.org/10.1152/physiol.00042.2009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Sandre O, Moreaux L, Brochard-Wyart F (1999) Dynamics of transient pores in stretched vesicles. PNAS 96:10591–10596. https://doi.org/10.1073/pnas.96.19.10591

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Sharmin S, Islam MZ, Karal MAS, Shibly SUA, Dohra H, Yamazaki M (2016) Effects of lipid composition on the entry of cell-penetrating peptide oligoarginine into single vesicles. Biochemistry 55:4154–4165. https://doi.org/10.1021/acs.biochem.6b00189

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Shibly SUA, Ghatak C, Karal MAS, Moniruzzaman M, Yamazaki M (2016) Experimental estimation of membrane tension induced by osmotic pressure. Biophys J 111:2190–2201. https://doi.org/10.1016/j.bpj.2016.09.043

    CAS  Article  Google Scholar 

  41. Shoemaker SD, Vanderlick TK (2002) Intramembrane electrostatic interactions destabilize lipid vesicles. Biophys J 83:2007–2014. https://doi.org/10.1016/S0006-3495(02)73962-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Simon SA, McIntosh TJ (1986) Depth of water penetration into lipid bilayers. Methods in enzymology. Academic Press, Cambridge, pp 511–521

    Google Scholar 

  43. Sukharev SI, Klenchin VA, Serov SM, Chernomordik LV, Chizmadzhev YA (1992) Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys J 63:1320–1327. https://doi.org/10.1016/S0006-3495(92)81709-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268. https://doi.org/10.1038/368265a0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Tamba Y, Terashima H, Yamazaki M (2011) A membrane filtering method for the purification of giant unilamellar vesicles. Chem Phys Lipids 164:351–358. https://doi.org/10.1016/j.chemphyslip.2011.04.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Tanizaki S, Feig M (2005) A generalized Born formalism for heterogeneous dielectric environments: Application to the implicit modeling of biological membranes. J Chem Phys 122:124706. https://doi.org/10.1063/1.1865992

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Tieleman DP, Leontiadou H, Mark AE, Marrink S-J (2003) Simulation of Pore Formation in Lipid Bilayers by Mechanical Stress and Electric Fields. J Am Chem Soc 125:6382–6383. https://doi.org/10.1021/ja029504i

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Tsong TY (1991) Electroporation of cell membranes. Biophys J. 60(2):297–306. https://doi.org/10.1016/S0006-3495(91)82054-910

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Winterhalter M (2014) Lipid membranes in external electric fields: Kinetics of large pore formation causing rupture. Adv Coll Interface Sci 208:121–128. https://doi.org/10.1016/j.cis.2014.01.003

    CAS  Article  Google Scholar 

  50. Wohlert J, den Otter WK, Edholm O, Briels WJ (2006) Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations. J Chem Phys 124:154905. https://doi.org/10.1063/1.2171965

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Zaman MM, Karal MAS, Khan MNI, Tareq ARM, Ahammed S, Akter M, Hossain A, Ullah AKMA (2019) Eco-friendly synthesis of Fe3O4 nanoparticles based on natural stabilizers and their antibacterial applications. ChemistrySelect 4:7824–7831. https://doi.org/10.1002/slct.201901594

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported partly by the Grants from Ministry of Science and Technology, ICT Division (Ministry of Posts, Telecommunications and Information Technology), Ministry of Education and CASR-BUET of Bangladesh to Mohammad Abu Sayem Karal.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abu Sayem Karal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Due to wrong coding usage, the text included ‘l’ before the equations 8 and 11 by mistake. Now, it has been removed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahamed, M.K., Karal, M.A.S., Ahmed, M. et al. Kinetics of irreversible pore formation under constant electrical tension in giant unilamellar vesicles. Eur Biophys J (2020). https://doi.org/10.1007/s00249-020-01440-1

Download citation

Keywords

  • Irreversible electroporation
  • Rate constant
  • Electrical tension
  • Pore formation
  • Giant unilamellar vesicles