Skip to main content

Advertisement

Log in

Are cell membrane nanotubes the ancestors of the nervous system?

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Cell membrane nanotubes, variously referred to as tunneling nanotubes and cytonemes, are currently the focus of much interest. They are of ancient origin, as indicated by their opportunistic use for cell invasion by pathogens, including bacteria and virus, and by their employment in bacterial networking. They play a significant role in cancer invasion and in the explanation of glioblastoma resistance to treatment. Their structure and properties have been investigated with optical tweezers. They have been detected in vivo. Their role in the immune system was early verified. Very recently, it was shown that they share many properties with nerve synapses, including the roles of glutamate and Ca ions. Similar features have also been observed in primitive plants. These results support the conjecture that, besides their roles in immunology, developmental biology and cancer, cell membrane nanotubes are the ancestors of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reproduced with permission from Kornberg (1999)

Fig. 2

Reproduced with permission from Rustom et al. (2004)

Fig. 3

Adapted from Watkins and Salter (2005), with permission

Fig. 4
Fig. 5

Reproduced from Osswald et al. (2015)

Fig. 6

Reproduced from Osswald et al. (2015)

Fig. 7

Reproduced from Gerdes and Carvalho (2008)

Fig. 8

Reproduced from Huang et al. (2019)

Similar content being viewed by others

References

  • Abounit S, Wu JW, Duff K, Guiliana Victoria GS, Zurzolo C (2016) Tunneling nanotubes: a possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases. Prion 10:ß344–ß351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ariazi J et al (2017) Tunneling nanotubes and gap junctions-their role in long-range intercellular communication during development, health, and disease conditions. Front Mol Neurosci 10:1–12

    Article  Google Scholar 

  • Arkwright PD, Luchetti F, Tour J, Roberts C, Ayub R, Morales AP, Rodriguez JJ, Gilmore A, Canonico B, Papa S, Esposti MD (2010) Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes. Cell Res 20:72–88

    Article  CAS  PubMed  Google Scholar 

  • Baker M (2017) How the Internet of cells has biologists buzzing. Nature 549:322–324

    Article  CAS  PubMed  Google Scholar 

  • Chiu J, DeSalle R, Lam H-M, Meisel L, Coruzzi G (1999) Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol Biol Evol 16:826–838

    Article  CAS  PubMed  Google Scholar 

  • Delage E et al (2016) Differential identity of Filopodia and tunneling nanotubes revealed by the opposite functions of actin regulatory complexes. Sci Rep 6:1–12

    Article  CAS  Google Scholar 

  • Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144:590–600

    Article  CAS  Google Scholar 

  • Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eugenin EA, Gaskill PI, Berman JW (2009) Tunneling nanotubes (TNT) are induced by HIV infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell Immun 254:142–148

    Article  CAS  Google Scholar 

  • Feinberg EH, VanHoven MK, Bendesky A, Wang G, Fetter RD, Shen K, Bargmann CI (2008) GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57:353–363

    Article  CAS  Google Scholar 

  • Gerdes HH, Carvalho RN (2008) Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 20:470–475

    Article  CAS  PubMed  Google Scholar 

  • Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Männel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11:328–336

    Article  CAS  PubMed  Google Scholar 

  • Han H, Hu J, Yan Q, Zhu J, Zhu Z, Chen Y, Sun J, Zhang R (2016) Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model. Mol Med Rep 13:1517–1524

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Liu S, Kornberg TB (2019) Glutamate signaling at cytoneme synapses. Science 363:948–949

    Article  CAS  PubMed  Google Scholar 

  • Inaba M, Buszczak M, Yamashita YM (2015) Nanotubes mediate niche–stem-cell signaling in the Drosophila testis. Nature 523:329–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadiu I, Gendelman HE (2011) Human immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits facilitates spread of infection. J Neuroimmun Pharmacol 6:658–675

    Article  Google Scholar 

  • Kornberg T (1999) Cytonemes. Trends Cell Biol 9:434

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Kim JH, Ranjan P, Metcalfe MG, Cao W, Mishina M, GangappaS Guo Z, Boyden ES, Zaki S, York I, García-Sastre A, Shaw M, Sambhara S (2017) Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Sci Rep 7:1–14

    Article  CAS  Google Scholar 

  • Meldrum DS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S

    Article  CAS  PubMed  Google Scholar 

  • Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258

    Article  CAS  PubMed  Google Scholar 

  • Nussenzveig HM (2018) Cell membrane biophysics with optical tweezers. Eur Biophys J 47:499–514

    Article  CAS  PubMed  Google Scholar 

  • Önfelt B, Nedvetzki S, Benninger RP, Purbhoo MA, Sowinski S, Hume AN, Seabra MC, Neil MAA, French PMW, Davis DM (2006) Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immun 177:8476–8483

    Article  PubMed  Google Scholar 

  • Osswald M et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528:93–98

    Article  CAS  PubMed  Google Scholar 

  • Pal RR, Baidya AK, Mamou G, Bhattacharya S, Socol Y, Kobi S, Katsowich N, Ben-Yehuda S, Rosenshine I (2019) Pathogenic E. coli extracts nutrients from infected host cells utilizing injectisome components. Cell 177:683–696

    Article  CAS  PubMed  Google Scholar 

  • Pontes B, Viana NB, Campanati L, Farina M, Moura-Neto V, Nussenzveig HM (2006) Structure and elastic properties of tunneling nanotubes. Eur Biophys J 37:121–129

    Article  CAS  Google Scholar 

  • Ramirez-Weber FA, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97:599–607

    Article  CAS  PubMed  Google Scholar 

  • Rustom A, Saffrich R, Marcovik I, Walther P, Gerdes H-H (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Sherer NM, Lehmann MJ, Luisa F, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9:310–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Köhler K, Oddos S, Eissmann P, Brodsky FM, Hopkins C, Önfelt B, Sattentau Q, Davis DM (2008) Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 10:212–219

    Article  CAS  Google Scholar 

  • Spees JL, Olson SD, Whitney MJ, Darwin J, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. PNAS 103:1283–1288

    Article  CAS  PubMed  Google Scholar 

  • Striedter GF, Avise JC, Ayala FJM (eds) (2013) In the light of evolution volume VI brain and behavior. National Academies Press, Washington

    Google Scholar 

  • Wang X, Gerdes HH (2012) Long-distance electrical coupling via tunneling nanotubes. Biochem Biophys Acta 1818:2082–2086

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH (2010) Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. PNAS 107:17194–17199

    Article  PubMed  Google Scholar 

  • Wang X, Bukoreshtliev NV, Gerdes HH (2012) Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes. PLoS ONEne 7(10):1–9

    Google Scholar 

  • Wang X, Yu X, Xie C, Tan Z, Tian Q, Zhu D, Liu M, Guan Y (2016) Rescue of brain function using tunneling nanotubes between neural stem cells and brain microvascular endothelial cells. Mol Neurobiol 53:2480–2488

    Article  CAS  PubMed  Google Scholar 

  • Watkins SC, Salter RD (2005) Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23:309–318

    Article  CAS  PubMed  Google Scholar 

  • Wudick MM et al (2018) CORNICHON sorting and regulation of GLR channels underlie pollen tube Ca2+ homeostasis. Science 360:533–536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Rio de Janeiro (FAPERJ). The author is a member of the Instituto Nacional de Ciência e Tecnologia de Fluidos Complexos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Moysés Nussenzveig.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nussenzveig, H.M. Are cell membrane nanotubes the ancestors of the nervous system?. Eur Biophys J 48, 593–598 (2019). https://doi.org/10.1007/s00249-019-01388-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-019-01388-x

Keywords

Navigation