Skip to main content
Log in

Slow relaxation during and after perturbation of bistable kinetics of gene expression

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

After a short perturbation of a bistable genetic network, it returns to its initial steady state or transits to another steady state. The time scale characterizing such transient regimes can be appreciably longer compared to those of the degradation of the perturbed mRNAs and proteins. The author shows in detail the specifics of this slowdown of the transient kinetics using mean-field kinetic equations and Monte Carlo simulations. Attention is focused on nanocarrier-mediated delivery and release of short non-coding RNA (e.g., miRNA or siRNA) into cells with subsequent suppression of the populations of the targeted mRNA and corresponding protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Bressloff PC (2017) Stochastic switching in biology: from genotype to phenotype. J Phys A Math Theor 50:133001

    Article  CAS  Google Scholar 

  • Cherry JL, Adler FR (2000) How to make a biological switch. J Theor Biol 203:117–130

    Article  CAS  PubMed  Google Scholar 

  • Dowdy SF (2017) Overcoming cellular barriers for RNA therapeutics. Nat Biotechn 35:222–229

    Article  CAS  Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lee J, Farquhar KJ, Yun J, Frankenberger CA, Bevilacqua E, Yeung K, Kim E-J, Balázsi G, Rosnera MR (2014) Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions. Proc Natl Acad Sci USA 111:E364–E373

    Article  CAS  PubMed  Google Scholar 

  • Levine E, Jacob EB, Levine H (2007) Target-specific and global effectors in gene regulation by microRNA. Biophys J 93:L52–L54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell O, Savery NJ, Grierson CS, di Bernardo M (2010) A comparative analysis of synthetic genetic oscillators. J Roy Soc Interf 7:1503–1524

    Article  CAS  Google Scholar 

  • Rausenberger J, Fleck C, Timmer J, Kollmann M (2009) Signatures of gene expression noise in cellular systems. Progr Biophys Molec Biol 100:57–66

    Article  CAS  Google Scholar 

  • Tibbitt MW, Dahlman JE, Langer R (2016) Emerging frontiers in drug delivery. J Am Chem Soc 138:704–717

    Article  CAS  PubMed  Google Scholar 

  • Veiga DFT, Dutta B, Balazsi G (2010) Network inference and network response identification: moving genome-scale data to the next level of biological discovery. Molec Biosyst 6:469–480

    Article  CAS  Google Scholar 

  • Zhdanov VP (2011) Kinetic models of gene expression including non-coding RNAs. Phys Rep 500:1–42

    Article  CAS  Google Scholar 

  • Zhdanov V P (2017) Kinetics of lipid-nanoparticle-mediated intracellular mRNA delivery and function. Phys Rev E 96:042406

  • Zhdanov VP (2018) mRNA function after intracellular delivery and release. BioSystems 165:52–56

    Article  CAS  PubMed  Google Scholar 

  • Zhdanov VP (2018) Intracellular miRNA or siRNA delivery and function. BioSystems 171:20–25

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by (1) Swedish Foundation for Strategic Research (Project No IRC15-0065) and (2) Russian Academy of Sciences and Federal Agency for Scientific Organizations (project 0303-2016-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Zhdanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanov, V.P. Slow relaxation during and after perturbation of bistable kinetics of gene expression. Eur Biophys J 48, 297–302 (2019). https://doi.org/10.1007/s00249-019-01358-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-019-01358-3

Keywords

Navigation