Skip to main content
Log in

Slowing down DNA translocation velocity using a LiCl salt gradient and nanofiber mesh

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Solid-state nanopores are considered an attractive basis for single-molecule DNA sequencing. At present, one obstacle to be overcome is the improvement of their temporal resolution, with the DNA molecules remaining in the sensing volume of the nanopore for a long period of time. Here, we used a composite system of a concentration gradient of LiCl in solution and a nanofiber mesh to slow the DNA perforation speed. Compared to different alkali metal solutions with the same concentration, LiCl can extend the dwell time to 20 ms, five times longer than NaCl and KCl. Moreover, as the concentration gradient increases, the dwell time can be tuned from dozens of milliseconds to more than 100 ms. When we introduce a nanofiber mesh layer on top of the pore in the asymmetric solution, the DNA molecules get retarded by 162–185 \(\upmu \)s/nt, which is three orders of magnitude slower than the bare nanopore. At the same time, because the molecule absorption region becomes larger at the pore vicinity, the higher molecule capture rate improves the detection efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akahori R, Haga T et al (2014) Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter. Nanotechnology 25:275501

    Article  CAS  PubMed  Google Scholar 

  • Akahori R, Yanagi I et al (2017) Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion. Sci Rep 7:9073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alibakhshi MA, Halman JR et al (2017) Picomolar fingerprinting of nucleic acid nanoparticles using solid-state nanopores. ACS Nano 11:9701–9710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branton D, Deamer DW et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Liu K et al (2015) Identification of single nucleotides in \(\text{ MoS }_2\) nanopores. Nat Nanotechnol 10:1070–1076

    Article  CAS  PubMed  Google Scholar 

  • Fologea D, Uplinger J et al (2005) Slowing DNA translocation in a solid-state nanopore. Nano Lett 5:1734–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garaj S, Hubbard W et al (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467:190–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Tsutsui M et al (2011) Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano 5:5509–5518

    Article  CAS  PubMed  Google Scholar 

  • He Y, Tsutsui M et al (2013) Mechanism of how salt-gradient-induced charges affect the translocation of DNA molecules through a nanopore. Biophys J 105:776–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyun C, Kaur H et al (2017) A tip-attached tuning fork sensor for the control of DNA translocation through a nanopore. Rev Sci Instrum 88:025001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal SM, Bashir R (2011) Nanopores: sensing and fundamental biological interactions. In: Hall AR, Dekker C (eds) Molecular detection and force spectroscopy in solid-state nanopores with integrated optical tweezers. Springer, Boston, p 37

    Google Scholar 

  • Knust S, Kreft D et al (2017) Measuring DNA translocation forces through \(\text{ MoS }_2\) nanopores with optical tweezers. Mater Today Proc 4:S168–S173

    Article  Google Scholar 

  • Kowalczyk SW, Grosberg AY et al (2011) Modelling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22:315101

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk SW, Wells DB et al (2012) Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett 12:1038–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok H, Briggs K et al (2014) Nanopore fabrication by controlled dielectric breakdown. PLoS One 9:e92880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Gershow M et al (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater 2:611–615

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Feng J et al (2014) Automically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8:2504–2511

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yobas L (2016) Slowing DNA translocation in a nanofluidic field-effect transistor. ACS Nano 10:3985–3994

    Article  CAS  PubMed  Google Scholar 

  • Mirsaidov U, Comer J et al (2010) Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix. Nanotechnology 21:395501

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar M (2010) Theory of capture rate in polymer translocation. J Chem Phys 132:195101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson EM, Li H et al (2014) Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography. ACS Nano 8:5484–5493

    Article  CAS  PubMed  Google Scholar 

  • Nova IC, Derrington IM et al (2017) Investigating asymmetric salt profiles for nanopore DNA sequencing with biological porin MspA. PLoS One 12:e0181599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross PD, Scruggs RL (1964) Electrophoresis of DNA. III. The effect of several univalent electrolytes on the mobility of DNA. Biopolymers 2:231–236

    Article  CAS  Google Scholar 

  • Sha J, Shi H et al (2017) Salt gradient improving signal-to-noise ration in solid-state nanopore. ACS Sens 2:506–512

    Article  CAS  PubMed  Google Scholar 

  • Squires AH, Hersey JS et al (2013) A nanopore-nanofiber mesh biosensor to control DNA translocation. J Am Chem Soc 135:16304–16307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajmir-Riahi HA, Messaoudi S (1992) The effects of monovalent cations Li\(^+\), Na\(^+\), K\(^+\), \(\text{ NH }_4^+\), Rb\(^+\) and Cs\(^+\) on the solid and solution structures of the nucleic acid components. Metal ion binding and sugar conformation. J Biomol Struct Dyn 10:345–365

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Liang Z et al (2015) Gel mesh as “brake” to slow down DNA translocation through solid-state nanopores. Nanoscale 7:13207–13214

    Article  CAS  PubMed  Google Scholar 

  • Trepagnier EH, Radenovic A et al (2007) Controlling DNA capture and propagation through artificial nanopores. Nano Lett 7:2824–2830

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui M, He Y et al (2012) Transverse electric field dragging of DNA in a nanochannel. Sci Rep 2:394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanunu M, Morrison W et al (2010) Electrostatic focusing of unlabelled DNA in to nanoscale pores using a salt gradient. Nat Nanotechnol 5:160–165

    Article  CAS  PubMed  Google Scholar 

  • Waugh M, Carlsen A et al (2015) Interfacing solid-state nanopores with gel media to slow DNA translocations. Electrophoresis 36:1759–1767

    Article  CAS  PubMed  Google Scholar 

  • Wong CTA, Muthukumar M (2007) Polymer capture by electro-osmotic flow of oppositely charged nanopores. J Chem Phys 126:164903

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhao Q et al (2013) Slowing down DNA translocation through solid-state nanopores by pressure. Small 9:4112–4117

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Xie W et al (2018) Slowing down DNA translocation by a nanofiber meshed layer. J Phys D Appl Phys 51:045402

    Article  CAS  Google Scholar 

  • Zhou D, Deng Y et al (2016) Rectification of ion current determined by the nanopore geometry: experiments and modelling. Chin Phys Lett 33:108501

    Article  Google Scholar 

  • Zoysa RSS, Jayawardhana DA et al (2009) Slowing DNA translocation through nanopores using a solution containing organic salts. J Phys Chem B 113:13332–13336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Acknowledgements are made to National Natural Science Foundations of China (NNSFC 61701474, 61471336, 31501084, 51503206), and West Light Foundation of CAS and Chongqing Sci. & Technol. Commission (cstc2017jcyjAX0320) for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuobin Wang or Deqiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1186 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Zhou, D., Shi, B. et al. Slowing down DNA translocation velocity using a LiCl salt gradient and nanofiber mesh. Eur Biophys J 48, 261–266 (2019). https://doi.org/10.1007/s00249-019-01350-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-019-01350-x

Keywords

Navigation