Skip to main content
Log in

A study of Love wave acoustic biosensors monitoring the adhesion process of tendon stem cells (TSCs)

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The Love wave biosensor is considered to be one of the most promising probing methods in biomedical research and diagnosis, and has been applied to detect the mechano–biological behaviour of cells attached to the surface of the device. More efforts should be devoted to basic theoretical research and relevant device performance analysis that may contribute to the further developments of Love wave sensors. In this study, a 36º YX-LiTaO3-based Love wave sensor with a parylene-C wave guiding layer was adopted as a cell-based biosensor to monitor the adhesion process of tendon stem/progenitor cells (TSCs), a newly discovered cell type in tendons. A theoretical model is proposed to describe the Love wave propagation, in which the adherent cells are considered as a uniform viscoelastic layer. The effects of viscoelastic cell layer and wave guiding layer on the propagation velocity υ and propagation loss (PL) are investigated. The numerical results indicate that adherent cell layers of different storage or loss shear modulus in certain ranges can induce pronounced and characteristic variations in υ and PL, revealing the potential of Love wave sensors to provide useful quantitative measures on cellular mechanical properties. The sensor response to the adhesion of TSCs exhibits high consistency with experimental observations, which demonstrates the Love wave biosensor as a very promising sensor platform for investigating cellular activities under multiple physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Auld BA (1973) Acoustic fields and waves in solids. Wiley, Hoboken

    Google Scholar 

  • Ballantine DS et al (1997) Acoustic wave sensor: theory, design, and physico-chemical applications. In: Stern R, Levy M (eds) Applications of modern acoustics. Academic Press, Cambridge

    Google Scholar 

  • Bender F, Cernosek RW, Josse F (2000) Love-wave biosensors using cross-linked polymer waveguides on LiTaO3. Electron Lett 36(19):1672–1673

    Article  CAS  Google Scholar 

  • Branch DW, Brozik SM (2004) Low-level detection of a Bacillus anthracis simulant using love-wave biosensors on 36°YX LiTaO3. Biosens Bioelectron 19(8):849–959

    Article  CAS  PubMed  Google Scholar 

  • Chang TY et al (2007) Cell and protein compatibility of parylene-C. Langmuir 23:11718–11725

    Article  CAS  PubMed  Google Scholar 

  • Du J et al (1996) A study of love-wave acoustic sensors. Sens Actuators A 56:211–219

    Article  CAS  Google Scholar 

  • Fabry B et al (2001) Scaling the microrheology of living cells. Phys Rev Lett 87(14):148102-1–148102-4

    Article  CAS  Google Scholar 

  • Gaso MIR et al (2013) Love wave biosensors: a review. In: Rinken T (ed) State of the art in biosensors-general aspects. InTech, London, p 360

    Google Scholar 

  • Giaever I, Keese CR (1993) A morphological biosensor for mammalian cells. Nature 366:591–592

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg MH, Du X, Plow EF (1992) Inside-out integrin signalling. Curr Opin Cell Biol 4:766–771

    Article  CAS  PubMed  Google Scholar 

  • Gizeli E (1997) Design considerations for the acoustic waveguide biosensor. Smart Mater Struct 6:700–706

    Article  CAS  Google Scholar 

  • Gizeli E et al (2003) Sensitivity of the acoustic waveguide biosensor to protein binding as a function of the waveguide properties. Biosens Bioelectron 18:1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Hardin J, Bertoni G, Kleinsmith LJ (2012) Becker’s world of the cell. Pearson Education, London

    Google Scholar 

  • Herrmann F et al (2001) Microacoustic sensors for liquid monitoring. Sens Update 9(1):105–160

    Article  CAS  Google Scholar 

  • Jakoby B, Vellekoop MJ (1997) Properties of love waves-applications in sensors. Smart Mater Struct 6:668–679

    Article  CAS  Google Scholar 

  • Kalantar-Zadeh K et al (2003) Novel love mode surface acoustic wave based immunosensors. Sens Actuators B 91:143–147

    Article  CAS  Google Scholar 

  • Lange K, Grimm S, Rapp M (2007) Chemical modification of parylene C coatings for SAW biosensors. Sens Actuators B 125:441–446

    Article  CAS  Google Scholar 

  • Li J et al (2005) Monitoring of integrin-mediated adhesion of human ovarian cancer cells to model protein surfaces by quartz crystal resonators-evaluation in the impedance analysis mode. Biosens Bioelectron 20:1333–1340

    Article  CAS  PubMed  Google Scholar 

  • Li F, Wang JH-C, Wang Q-M (2007) Monitoring cell adhesion by using thickness shear mode acoustic wave sensors. Biosens Bioelectron 23:42–50

    Article  CAS  PubMed  Google Scholar 

  • Liu J, He S (2010) Theoretical analysis on love waves in a layered structure with a piezoelectric substate and multiple elastic layers. J Appl Phys 107:073511-1–073511-8

    Google Scholar 

  • Liu J et al (2013) Properties of Love Waves in a Piezoelectric Layered Structure with a Viscoelastic Guiding Layer. Smart Mater Struct 22:125034-1–125034-8

    Google Scholar 

  • Marx KA et al (2005) Quartz crystal microbalance biosensor study of endothelial cells and their extracellular matrix following cell removal-evidence for transient cellular stress and viscoelastic changes during detachment and the elastic behavior of the pure matrix. Anal Biochem 343:23–34

    Article  CAS  PubMed  Google Scholar 

  • Matatagui D et al (2011) Array of love-wave sensors based on quartz/novolac to detect CWA simulants. Talanta 85:1442–1447

    Article  CAS  PubMed  Google Scholar 

  • McHale G, Newton MI, Martin F (2002) Theoretical mass sensitivity of love wave and layer guided acoustic plate mode sensors. J Appl Phys 91(12):9701–9710

    Article  CAS  Google Scholar 

  • McHale G, Newton ML, Martin F (2003) Theoretical mass, liquid, and polymer sensitivity of acoustic wave sensors with viscoelastic guiding layers. J Appl Phys 93(1):675–690

    Article  CAS  Google Scholar 

  • Saitakis M, Tsortos A, Gizeli E (2010) Probing the interaction of a membrane receptor with a surface-attached ligand using whole cells on acoustic biosensors. Biosens Bioelectron 25:1688–1693

    Article  CAS  PubMed  Google Scholar 

  • Smith RT, Welsh FS (1971) Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J Appl Phys 42:2219–2230

    Article  CAS  Google Scholar 

  • Smith BA et al (2005) Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist. Biophys J 88(4):2994–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan L et al (2009) Dynamic measurement of the surface stress induced by the attachment and growth of cells on au electrode with a quartz crystal microbalance. Biosens Bioelectron 24:1603–1609

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Liu Q (2010) Cell-based biosensors: principles and applications. Artech House, Norwoord, p 271

    Google Scholar 

  • Wang Z, Cheeke JDN, Jen CK (1994) Sensitivity analysis for love mode acoustic gravimetric sensors. Appl Phys Lett 64:2940–2942

    Article  CAS  Google Scholar 

  • White RM (1970) Surface elastic waves. Proc IEEE 58(8):1238–1276

    Article  Google Scholar 

  • Wu H et al (2015) Monitoring the adhesion process of tendon stem cells using shear-horizontal surface acoustic wave sensors. In: 2015 Joint conference of ieee international frequency control & european frequency and time forum, 2015, Denver, CO, USA

  • Wu H et al (2015) Aging-related viscoelasticity variation of tendon stem cells (TSC) characterized by quartz thickness shear mode (TSM) resonators. Sens Actuators B 210:369–380

    Article  CAS  Google Scholar 

  • Wu H et al (2017) Theoretical analysis of love wave biosensors in liquid with a viscoelastic wave guiding layer. J Appl Phys 121:054501

    Article  CAS  Google Scholar 

  • Zhang X et al (2016) A novel sensitive cell-based love wave biosensor for marine toxin detection. Biosens Bioelectron 77:573–579

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Huiyan Wu thanks Dr. J. Zhang, Dr. T. Yuan, Dr. Y. Zhou, and Dr. G. Zhao for their help during the course of this study. This work is supported in part by the NIH Grant AR060920 and AR061395 (JHW).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James H.-C. Wang or Qing-Ming Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Zu, H., Wang, J.HC. et al. A study of Love wave acoustic biosensors monitoring the adhesion process of tendon stem cells (TSCs). Eur Biophys J 48, 249–260 (2019). https://doi.org/10.1007/s00249-019-01349-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-019-01349-4

Keywords

Navigation