European Biophysics Journal

, Volume 48, Issue 3, pp 231–248 | Cite as

Algal cell response to laboratory-induced cadmium stress: a multimethod approach

  • Nadica Ivošević DeNardisEmail author
  • Jadranka Pečar Ilić
  • Ivica Ružić
  • Nives Novosel
  • Tea Mišić Radić
  • Andreas Weber
  • Damir Kasum
  • Zuzana Pavlinska
  • Ria Katalin Balogh
  • Bálint Hajdu
  • Alžbeta Marček Chorvátová
  • Béla Gyurcsik
Original Article


We examined the response of algal cells to laboratory-induced cadmium stress in terms of physiological activity, autonomous features (motility and fluorescence), adhesion dynamics, nanomechanical properties, and protein expression by employing a multimethod approach. We develop a methodology based on the generalized mathematical model to predict free cadmium concentrations in culture. We used algal cells of Dunaliella tertiolecta, which are widespread in marine and freshwater systems, as a model organism. Cell adaptation to cadmium stress is manifested through cell shape deterioration, slower motility, and an increase of physiological activity. No significant change in growth dynamics showed how cells adapt to stress by increasing active surface area against toxic cadmium in the culture. It was accompanied by an increase in green fluorescence (most likely associated with cadmium vesicular transport and/or beta-carotene production), while no change was observed in the red endogenous fluorescence (associated with chlorophyll). To maintain the same rate of chlorophyll emission, the cell adaptation response was manifested through increased expression of the identified chlorophyll-binding protein(s) that are important for photosynthesis. Since production of these proteins represents cell defence mechanisms, they may also signal the presence of toxic metal in seawater. Protein expression affects the cell surface properties and, therefore, the dynamics of the adhesion process. Cells behave stiffer under stress with cadmium, and thus, the initial attachment and deformation are slower. Physicochemical and structural characterizations of algal cell surfaces are of key importance to interpret, rationalize, and predict the behaviour and fate of the cell under stress in vivo.


Adhesion kinetics Autofluorescence Cadmium bioavailability Cell stress adaptation Nanomechanics Protein expression 



This work was conducted and supported by project Algal cell biophysical properties as markers for environmental stress in aquatic systems (ID 21720055) funded through the International Visegrad Fund. AMH acknowledges support from the Integrated Initiative of European Laser Infrastructures LASERLAB-EUROPE IV (H2020 grant agreement no. 654148). AW acknowledges funding from the Austrian Science Fund (project number P29562N28). We would like to thank (i) Tarzan Legović for discussing cell motility analysis with us, (ii) Jagoba Iturri and José Luis Toca-Herrera for discussing cell nanomechanics with AW and (iii) project partner Josef Sepitka for his participation and interest in this work. The authors acknowledge networking effort within COST Action CA15126 ARBRE MOBIEU.

Supplementary material

249_2019_1347_MOESM1_ESM.pdf (386 kb)
Supplementary material 1 (PDF 386 kb)


  1. Becker W (2015) Advanced time-correlated single photon counting applications. Springer, New York.
  2. Belghith T, Athmouni K, Bellassoued K, El Feki A, Ayadi H (2015) Physiological and biochemical response of Dunaliella salina to cadmium pollution. J Appl Phycol 28:991–999. CrossRefGoogle Scholar
  3. Butt HJ, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotech 6:1–7. CrossRefGoogle Scholar
  4. Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and application. Surf Sci Rep 59:1–152. CrossRefGoogle Scholar
  5. Campbell PGC, Errécalde O, Fortin C, Hiriart-Baer VP, Vigneault B (2002) Metal bioavailability to phytoplankton-applicability of the biotic ligand model. Comp Biochem Physiol C 133:189–206. Google Scholar
  6. Caricato R, Giordano ME, Schettino T, Lionetto MG (2018) Functional involvement of carbonic anhydrase in the lysosomal response to cadmium exposure in Mytilus galloprovincialis digestive gland. Front Physiol 9:319. CrossRefGoogle Scholar
  7. Chorvatova A, Chorvat D Jr. (2014) Tissue fluorophores and their spectroscopic characteristics. In: Marcu L, French PMW, Elson DSV (eds) Fluorescence lifetime spectroscopy and imaging for tissue biomedical diagnostics. CRC Press Publ, Boca Raton, pp 47–84.
  8. Damaraju S, Schlede S, Eckhardt U, Lokstein H, Grimm B (2011) Functions of the water soluble chlorophyll-binding protein in plants. J Plant Physiol 168:1444–1451. CrossRefGoogle Scholar
  9. Einali A, Mazang-Ghasemi S, Valizadeh J, Noorozi M (2017) Metabolic responses and β-carotene production by the unicellular green alga Dunaliella salina exposed to leaf extracts. Acta Bot Brasilica 31:180–190. CrossRefGoogle Scholar
  10. EPA (2016) Aquatic life ambient water quality criteria for cadmium—2016. Aquatic Life Criteria—Cadmium Documents. EPA Web site. Accessed 31 Oct 2018
  11. Fisher NS, Boh M, Teyssi J-L (1984) Accumulation and toxicity of Cd, Zn, Ag, and Hg in four marine phytoplankters. Mar Ecol Prog Ser 18:201–213. CrossRefGoogle Scholar
  12. Folgar S, Torres E, Pérez-Rama M, Cid A, Herrero C, Abalde J (2008) Dunaliella salina as marine microalga highly tolerant to but a poor remover of cadmium. J Hazard Mater 165:486–493. CrossRefGoogle Scholar
  13. García-Ríos V, Freile-Pelegrín Y, Robledo D, Mendoza-Cózatl D, Moreno-Sánchez R, Gold-Bouchot G (2007) Cell wall composition affects Cd2+ accumulation and intracellular thiol peptides in marine red algae. Aquatic Toxicol 81:65–72. CrossRefGoogle Scholar
  14. Guihéneuf F, Khan A, Tran L-SP (2016) Genetic engineering: a promising tool to engender physiological, biochemical, and molecular stress resilience in green microalgae. Front Plant Sci 7:400. CrossRefGoogle Scholar
  15. Guillard RR (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebratae animals. Plenum, New York, pp 29–60.
  16. Hildebrand M, Doktycz MJ, Allison DP (2008) Application of AFM in understanding biomineral formation in diatoms. Pflüg Arch Eur J Phy 456:127–137. CrossRefGoogle Scholar
  17. Imani S, Rezaei-Zarchi S, Hashemi M, Borna H, Javid A, Zand AM, Abarghouei HB (2011) Hg, Cd and Pb heavy metal bioremediation by Dunaliella alga. J Med Plants Res 5:2775–2780Google Scholar
  18. Israelachvili JN (1992) Intermolecular forces and surface forces. Academic Press Limited, New York.
  19. Ivošević DeNardis N, Ružić I, Pečar-Ilić J, El Shawish S, Ziherl P (2012) Reaction kinetics and mechanicam models of liposome adhesion on charged interface. Bioelectrochemistry 88:48–56. CrossRefGoogle Scholar
  20. Ivošević DeNardis N, Pečar-Ilić J, Ružić I, Pletikapić G (2015) Cell adhesion and spreading at a charged interface: insight into the mechanism using surface techniques and mathematical modelling. Electrochim Acta 176:743–754. CrossRefGoogle Scholar
  21. Jauvert E, Palleau E, Dague E, Ressier L (2014) Directed assembly of living Pseudomonas aeruginosa bacteria on PEI patterns generated by nanoxerography for statistical AFM bioexperiments. ACS Appl Mater Interfaces 6:21230–21236. CrossRefGoogle Scholar
  22. Kim YK, Yoo WI, Lee SH, Lee MY (2005) Proteomic analysis of cadmium-induced protein profile alterations from marine alga nannochloropsis oculata. Ecotoxicology 14:589–596. CrossRefGoogle Scholar
  23. Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FM (2005) Biochemistry: a cadmium enzyme from a marine diatom. Nature 435:42. CrossRefGoogle Scholar
  24. LaRoche J, Bennett J, Falkowski PG (1990) Characterization of a cDNA encoding for the 28.5-kDa LHCII apoprotein from the unicellular marine chlorophyte, Dunalieila tertiolecta. Gene 95:165–171. CrossRefGoogle Scholar
  25. Martell AE, Smith RM, Motekaitis RJ (1998, 2004) NIST critically selected stability constants of metal complexes database. NIST Standard Reference Database, Vol. 46, Versions 5.0 and 8.0, Standard Reference Data Program, National Institute of Standards and Technology, U.S. Department of Commerce, GaithersburgGoogle Scholar
  26. Miazek K, Iwanek W, Remacle C, Richel A, Goffin D (2015) Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci 16:23929–23969. CrossRefGoogle Scholar
  27. Nikookar K, Moradshahi A, Hosseini L (2005) Physiological responses of Dunaliella salina and Dunaliella tertiolecta to copper toxicity. Biomol Eng 22:141–146. CrossRefGoogle Scholar
  28. Pillet F, Dague E, Pečar Ilić J, Ružić I, Rols M-P, Ivošević DeNardis N (2019) Changes in nanomechanical properties and adhesion dynamics of algal cells during their growth. Bioelectrochemistry. Google Scholar
  29. Pinto E, Sigaud Kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018. CrossRefGoogle Scholar
  30. Pletikapić G, Berquand A, Mišić Radić T, Svetličić V (2012) Quantitative nanomechanical mapping of marine diatom in seawater using peak force tapping atomic force microscopy1. J Phycol 48:174–185. CrossRefGoogle Scholar
  31. Ružić I (1982) Theoretical aspects of the direct titration of natural waters and its information yield for trace metal speciation. Anal Chim Acta 140:99–113. CrossRefGoogle Scholar
  32. Ružić I, Pečar-Ilić J, Ivošević DeNardis N (2010) Mathematical model for kinetics of organic particle adhesion at an electrified interface. J Electroanal Chem 642:120–126. CrossRefGoogle Scholar
  33. Sacan MT, Oztay F, Bolkent S (2007) Exposure of Dunaliella tertiolecta to lead and aluminum: toxicity and effects on ultrastructure. Biol Trace Elem Res 120:264–272. CrossRefGoogle Scholar
  34. Saha SK, Kazipet N, Murray P (2018) The carotenogenic Dunaliella salina CCAP 19/20 produces enhanced levels of carotenoid under specific nutrients limitation. BioMed Res Int.
  35. Shafik MA (2008) Phytoremediation of some heavy metals by Dunaliella salina. Global J Environ Res 2:1–11Google Scholar
  36. Shariati M, Yahyaabadi S (2006) The effects of different concentrations of cadmium on the growth rate and beta-carotene synthesis in unicellular green algae Dunaliella salina. Iran J Sci Technol Trans A 30:57–63. Google Scholar
  37. Svetličić V, Ivošević N, Kovač S, Žutić V (2001) Charge displacement by adhesion and spreading of a cell. Bioelectrochemistry 53:79–86. CrossRefGoogle Scholar
  38. Taha HM, Said HA, Abdel-aziz WM, Khaleafa AEF (2012) Effect of zinc and copper toxicity on growth and some metabolites of the green alga Tetraselmis chuii Butcher. Egypt J Exp Biol (Bot) 8:183–192Google Scholar
  39. Teplicky T, Danisova M, Valica M, Chorvat D Jr, Marcek Chorvatova A (2017) Fluorescence properties of Chlorella sp. algae. AEEE 15:352–367. CrossRefGoogle Scholar
  40. Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH, Miyamotoa K (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 293:653–659. CrossRefGoogle Scholar
  41. Tsuji N, Hirayanagi N, Iwabe O, Namba T, Tagawa M, Miyamoto S, Miyasaka H, Takagi M, Hirata K, Miyamoto K (2003) Regulation of phytochelatin synthesis by zinc and cadmium in marine green alga, Dunaliella tertiolecta. Phytochem 62:453–459. CrossRefGoogle Scholar
  42. van den Berg CMG (1982) Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2 I. Theory. Mar Chem 11:307–322. CrossRefGoogle Scholar
  43. Visviki J, Rachlin W (1994) Acute and chronic exposure of Dunaliella salina and Chlamydomonas bullosa to copper and cadmium: effects on ultrastructure. Arch Environ Contam Toxicol 26:154–162. Google Scholar
  44. Wan L, Zhang H (2012) Cadmium toxicity—effects on cytoskeleton, vesicular trafficking and cell wall construction. Plant Signal Behav 7:345–348. CrossRefGoogle Scholar
  45. Wang M-J, Wang W-X (2009) Cadmium in three marine phytoplankton: accumulation, subcellular fate and thiol induction. Aquat Toxicol 95:99–107. CrossRefGoogle Scholar
  46. Wikfors GH, Neeman A, Jackson PJ (1991) Cadmium-binding polypeptides in microalgal strains with laboratory-induced cadmium tolerance. Mar Ecol Prog Ser 79:163–170. CrossRefGoogle Scholar
  47. Zamani N, Rasekh F, Ghahremanpour MM, Moradshahi A, Kholdebarin B (2009) Physiological responses of Dunaliella tertiolecta to Hg2+-induced oxidative stress. Iran J Sci Technol Trans A 39:65–74. Google Scholar
  48. Zmiri A, Ginzburg BZ (1983) Extracellular space and cellular sodium content in pellets of Dunaliella parva Dead Sea 75. Plant Sci Lett 30:211–218. CrossRefGoogle Scholar
  49. Žutić V, Kovač S, Svetličić V (1993) Heterocoalescence between organic microdroplets and charged conductive interface. J Electroanal Chem 349:173–186. CrossRefGoogle Scholar
  50. Žutić V, Svetličić V, Ivošević N, Hozić A, Pečar O (2004) Northern Adriatic mesocosm experiment Rovinj 2003: dynamics of organic microparticles studied by the electrochemical technique. Period Biolog 106:67–74Google Scholar

Copyright information

© European Biophysical Societies' Association 2019

Authors and Affiliations

  • Nadica Ivošević DeNardis
    • 1
    Email author
  • Jadranka Pečar Ilić
    • 1
  • Ivica Ružić
    • 1
  • Nives Novosel
    • 2
  • Tea Mišić Radić
    • 1
  • Andreas Weber
    • 3
  • Damir Kasum
    • 1
  • Zuzana Pavlinska
    • 4
    • 5
  • Ria Katalin Balogh
    • 6
  • Bálint Hajdu
    • 6
  • Alžbeta Marček Chorvátová
    • 4
    • 5
  • Béla Gyurcsik
    • 6
  1. 1.Division for Marine and Environmental ResearchRuđer Bošković InstituteZagrebCroatia
  2. 2.Department of Biology, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  3. 3.Department of Nanobiotechnology, Institute for BiophysicsUniversity of Natural Resources and Life SciencesViennaAustria
  4. 4.Department of Biophysics, Faculty of Natural SciencesUniversity of Ss. Cyril and MethodiusTrnavaSlovakia
  5. 5.Department of BiophotonicsInternational Laser CentreBratislavaSlovakia
  6. 6.Department of Inorganic and Analytical ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations