Skip to main content
Log in

Differential effect of Androctonus australis hector venom components on macrophage KV channels: electrophysiological characterization

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Neurotoxins of scorpion venoms modulate ion channels. Voltage-gated potassium (KV) channels regulate the membrane potential and are involved in the activation and proliferation of immune cells. Macrophages are key components of the inflammatory response induced by scorpion venom. The present study was undertaken to investigate the effect of Androctonus australis hector (Aah) venom on KV channels in murine resident peritoneal macrophages. The cytotoxicity of the venom was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) -based assay and electrophysiological recordings were performed using the whole-cell patch clamp technique. High doses of Aah venom (50, 125, 250 and 500 µg/ml) significantly decreased cell viability, while concentrations of 0.1–25 µg/ml were not cytotoxic towards peritoneal macrophages. Electrophysiological data revealed a differential block of KV current between resting and LPS-activated macrophages. Aah venom significantly reduced KV current amplitude by 62.5 ± 4.78% (n = 8, p < 0.05), reduced the use-dependent decay of the current, decreased the degree of inactivation and decelerated the inactivation process of KV current in LPS-activated macrophages. Unlike cloned KV1.5 channels, Aah venom exerted a similar blocking effect on KV1.3 compared to KV current in LPS-activated macrophages, along with a hyperpolarizing shift in the voltage dependence of KV1.3 inactivation, indicating a direct mechanism of current inhibition by targeting KV1.3 subunits. The obtained results, demonstrating that Aah venom differentially targets KV channels in macrophages, suggest differential outcomes for their inhibitions, and that further investigations of scorpion venom immunomodulatory potential are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adi-Bessalem S, Hammoudi-Triki D, Laraba-Djebari F (2008) Pathophysiological effects of Androctonus australis hector scorpion venom: tissue damages and inflammatory response. Exp Toxicol Pathol 60:373–380

    Article  PubMed  Google Scholar 

  • Adi-Bessalem S, Mendil A, Hammoudi-Triki D, Laraba-Djebari F (2012) Lung immunoreactivity and airway inflammation: their assessment after scorpion envenomation. Inflammation 35:501–508

    Article  CAS  PubMed  Google Scholar 

  • Adi-Bessalem S, Hammoudi-Triki D, Laraba-Djebari F (2015) Scorpion venom interactions with the immune system scorpion venoms. Springer, Berlin, pp 87–107

    Google Scholar 

  • Ait-Lounis A, Laraba-Djebari F (2012) TNF-alpha involvement in insulin resistance induced by experimental scorpion envenomation. PLoS Negl Trop Dis 6:e1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ait-Lounis A, Laraba-Djebari F (2015) TNF-alpha modulates adipose macrophage polarization to M1 phenotype in response to scorpion venom. Inflamm Res 64:929–936

    Article  CAS  PubMed  Google Scholar 

  • Bekkari N, Martin-Eauclaire M-F, Laraba-Djebari F (2015) Complement system and immunological mediators: their involvements in the induced inflammatory process by Androctonus australis hector venom and its toxic components. Exp Toxicol Pathol 67:389–397

    Article  CAS  PubMed  Google Scholar 

  • Bertazzi DT, de Assis-Pandochi AI, Azzolini AECS, Talhaferro VL, Lazzarini M, Arantes EC (2003) Effect of Tityus serrulatus scorpion venom and its major toxin, TsTX-I, on the complement system in vivo. Toxicon 41:501–508

    Article  CAS  PubMed  Google Scholar 

  • Bertazzi D, Assis-Pandochi A, Sampaio S, Arantes E (2005) Isolation of a new toxin from Tityus serrulatus scorpion venom with action on the complement system. Febs J 272:5

    Google Scholar 

  • Borges CM, Silveira MR, Aparecida M, Beker C, Freire-Maia L, Teixeira M (2000) Scorpion venom-induced neutrophilia is inhibited by a PAF receptor antagonist in the rat. J Leukoc Biol 67:515–519

    Article  CAS  PubMed  Google Scholar 

  • Borges A, Op den Camp HJ, De Sanctis JB (2011) Specific activation of human neutrophils by scorpion venom: a flow cytometry assessment. Toxicol Vitro 25:358–367

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231:59–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrithers MD, Dib-Hajj S, Carrithers LM, Tokmoulina G, Pypaert M, Jonas EA, Waxman SG (2007) Expression of the voltage-gated sodium channel NaV1. 5 in the macrophage late endosome regulates endosomal acidification. J Immunol 178:7822–7832

    Article  CAS  PubMed  Google Scholar 

  • Carrithers MD, Chatterjee G, Carrithers LM, Offoha R, Iheagwara U, Rahner C, Graham M, Waxman SG (2009) Regulation of podosome formation in macrophages by a splice variant of the sodium channel SCN8A. J Biol Chem 284:8114–8126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casella-Martins A, Ayres LR, Burin SM, Morais FR, Pereira JC, Faccioli LH, Sampaio SV, Arantes EC, Castro FA, Pereira-Crott LS (2015) Immunomodulatory activity of Tityus serrulatus scorpion venom on human T lymphocytes. J Venom Anim Toxins Incl Trop Dis 21:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chair-Yousfi I, Laraba-Djebari F, Hammoudi-Triki D (2015) Androctonus australis hector venom contributes to the interaction between neuropeptides and mast cells in pulmonary hyperresponsiveness. Int Immunopharmacol 25:19–29

    Article  CAS  PubMed  Google Scholar 

  • Cordero-Morales JF, Cuello LG, Perozo E (2006a) Voltage-dependent gating at the KcsA selectivity filter. Nat Struct Mol Biol 13:319–322

    Article  CAS  PubMed  Google Scholar 

  • Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM, Roux B, Perozo E (2006b) Molecular determinants of gating at the potassium-channel selectivity filter. Nat Struct Mol Biol 13:311–318

    Article  CAS  PubMed  Google Scholar 

  • Cordero-Morales JF, Jogini V, Lewis A, Vásquez V, Cortes DM, Roux B, Perozo E (2007) Molecular driving forces determining potassium channel slow inactivation. Nat Struct Mol Biol 14:1062–1069

    Article  CAS  PubMed  Google Scholar 

  • Corzo G, Espino-Solis GP (2017) Selected scorpion toxin exposures induce cytokine release in human peripheral blood mononuclear cells. Toxicon 127:56–62

    Article  CAS  PubMed  Google Scholar 

  • De-Matos I, Talvani A, Rocha O, Freire-Maia L, Teixeira M (2001) Evidence for a role of mast cells in the lung edema induced by Tityus serrulatus venom in rats. Toxicon 39:863–867

    Article  CAS  PubMed  Google Scholar 

  • Feske S, Wulff H, Skolnik EY (2015) Ion channels in innate and adaptive immunity. Annu Rev Immunol 33:291–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuhara Y, Reis M, Dellalibera-Joviliano R, Cunha F, Donadi E (2003) Increased plasma levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in patients moderately or severely envenomed by Tityus serrulatus scorpion sting. Toxicon 41:49–55

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604

    Article  CAS  PubMed  Google Scholar 

  • Grissmer S, Cahalan M (1989a) Divalent ion trapping inside potassium channels of human T lymphocytes. J Gen Physiol 93:609–630

    Article  CAS  PubMed  Google Scholar 

  • Grissmer S, Cahalan M (1989b) TEA prevents inactivation while blocking open K + channels in human T lymphocytes. Biophys J 55:203–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadaddezfuli R, Khodadadi A, Assarehzadegan MA, Pipelzadeh MH, Saadi S (2015) Hemiscorpius lepturus venom induces expression and production of interluckin-12 in human monocytes. Toxicon 100:27–31

    Article  CAS  PubMed  Google Scholar 

  • Hammoudi-Triki D, Ferquel E, Robbe-Vincent A, Bon C, Choumet V, Laraba-Djebari F (2004) Epidemiological data, clinical admission gradation and biological quantification by ELISA of scorpion envenomations in Algeria: effect of immunotherapy. Trans R Soc Trop Med Hyg 98:240–250

    Article  PubMed  Google Scholar 

  • Ismail M (1995) The scorpion envenoming syndrome. Toxicon 33:825–858

    Article  CAS  PubMed  Google Scholar 

  • Lange A, Giller K, Hornig S, Martin-Eauclaire M-F, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962

    Article  CAS  PubMed  Google Scholar 

  • Laraba-Djebari F, Adi-Bessalem S, Hammoudi-Triki D (2015) Scorpion venoms: pathogenesis and biotherapies scorpion venoms. Springer, Berlin, pp 63–85

    Book  Google Scholar 

  • Magalhães MM, Pereira MES, Amaral CF, Rezende NA, Campolina D, Bucaretchi F, Gazzinelli RT, Cunha-Melo JR (1999) Serum levels of cytokines in patients envenomed by Tityus serrulatus scorpion sting. Toxicon 37:1155–1164

    Article  PubMed  Google Scholar 

  • Matos IM, Souza DG, Seabra DG, Freire-Maia L, Teixeira MM (1999) Effects of tachykinin NK 1 or PAF receptor blockade on the lung injury induced by scorpion venom in rats. Eur J Pharmacol 376:293–300

    Article  CAS  PubMed  Google Scholar 

  • Medjadba W, Martin-Eauclaire M-F, Laraba-Djebari F (2016) Involvement of kallikrein-Kinin system on cardiopulmonary alterations and inflammatory response induced by purified Aah I toxin from scorpion venom. Inflammation 39:290–302

    Article  CAS  PubMed  Google Scholar 

  • Moreno C, Prieto P, Macías Á, Pimentel-Santillana M, de la Cruz A, Través PG, Boscá L, Valenzuela C (2013) Modulation of voltage-dependent and inward rectifier potassium channels by 15-epi-lipoxin-A4 in activated murine macrophages: implications in innate immunity. J Immunol 191:6136–6146

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Mouhat S, Jouirou B, Mosbah A, De Waard M, Sabatier J-M (2004) Diversity of folds in animal toxins acting on ion channels. Biochem J 378:717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen A, Kath JC, Hanson DC, Biggers MS, Canniff PC, Donovan CB, Mather RJ, Bruns MJ, Rauer H, Aiyar J (1996) Novel nonpeptide agents potently block the C-type inactivated conformation of Kv1. 3 and suppress T cell activation. Mol Pharmacol 50:1672–1679

    CAS  PubMed  Google Scholar 

  • Oliva C, González V, Naranjo D (2005) Slow inactivation in voltage gated potassium channels is insensitive to the binding of pore occluding peptide toxins. Biophys J 89:1009–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panyi G, Sheng Z, Deutsch C (1995) C-type inactivation of a voltage-gated K + channel occurs by a cooperative mechanism. Biophys J 69:896–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peraza DA, Mojena M, de la Cruz A, Gonzalez T, Bosca L, Galmarini CM, Valenzuela C (2017) Trabectedin re-educates resting peritoneal macrophages into M1 Subtype. Biophys J 112:405a

    Article  Google Scholar 

  • Petricevich VL, Lebrun I (2005) Immunomodulatory effects of the Tityus serrulatus venom on murine macrophage functions in vitro. Med Inflamm 2005:39–49

    Article  CAS  Google Scholar 

  • Petricevich VL, Reynaud E, Cruz AH, Possani LD (2008) Macrophage activation, phagocytosis and intracellular calcium oscillations induced by scorpion toxins from Tityus serrulatus. Clin Exp Immunol 154:415–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pucca MB, Peigneur S, Cologna CT, Cerni FA, Zoccal KF, Bordon Kde C, Faccioli LH, Tytgat J, Arantes EC (2015) Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: evidence of a pro-inflammatory toxin on macrophages. Biochimie 115:8–16

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Bello V, Sevcik C, Peigneur S, Tytgat J, D’Suze G (2014) Macrophage alteration induced by inflammatory toxins isolated from Tityus discrepans scorpion venom. The role of Na(+)/Ca(2 +) exchangers. Toxicon 82:61–75

    Article  CAS  PubMed  Google Scholar 

  • Raouraoua-Boukari R, Sami-Merah S, Hammoudi-Triki D, Martin-Eauclaire MF, Laraba-Djebari F (2012) Immunomodulation of the inflammatory response induced by Androctonus australis hector neurotoxins: biomarker interactions. NeuroImmunoModulation 19:103–110

    Article  CAS  PubMed  Google Scholar 

  • Saadi S, Assarehzadegan MA, Pipelzadeh MH, Hadaddezfuli R (2015) Induction of IL-12 from human monocytes after stimulation with Androctonus crassicauda scorpion venom. Toxicon 106:117–121

    Article  CAS  PubMed  Google Scholar 

  • Saidi H, Adi-Bessalem S, Hammoudi-Triki D, Laraba-Djebari F (2013) Effects of atropine and propranolol on lung inflammation in experimental envenomation: comparison of two buthidae venoms. J Venom Anim Toxins Incl Trop Dis 19:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Vicente R, Escalada A, Coma M, Fuster G, Sanchez-Tillo E, Lopez-Iglesias C, Soler C, Solsona C, Celada A, Felipe A (2003) Differential voltage-dependent K + channel responses during proliferation and activation in macrophages. J Biol Chem 278:46307–46320

    Article  CAS  PubMed  Google Scholar 

  • Vicente R, Escalada A, Villalonga N, Texido L, Roura-Ferrer M, Martin-Satue M, Lopez-Iglesias C, Soler C, Solsona C, Tamkun MM, Felipe A (2006) Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K + channel in macrophages. J Biol Chem 281:37675–37685

    Article  CAS  PubMed  Google Scholar 

  • Villalonga N, David M, Bielanska J, Vicente R, Comes N, Valenzuela C, Felipe A (2010) Immunomodulation of voltage-dependent K + channels in macrophages: molecular and biophysical consequences. J Gen Physiol 135:135–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulff H, Knaus H-G, Pennington M, Chandy KG (2004) K + channel expression during B cell differentiation: implications for immunomodulation and autoimmunity. J Immunol 173:776–786

    Article  CAS  PubMed  Google Scholar 

  • Zachariae U, Schneider R, Velisetty P, Lange A, Seeliger D, Wacker SJ, Karimi-Nejad Y, Vriend G, Becker S, Pongs O (2008) The molecular mechanism of toxin-induced conformational changes in a potassium channel: relation to C-type inactivation. Structure 16:747–754

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Huang J, Yuan X, Peng B, Liu W, Han S, He X (2015) Toxins targeting the KV1. 3 channel: potential immunomodulators for autoimmune diseases. Toxins 7:1749–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoccal KF, da Silva Bitencourt C, Paula-Silva FWG, Sorgi CA, Bordon KdCF, Arantes EC, Faccioli LH (2014) TLR2, TLR4 and CD14 recognize venom-associated molecular patterns from Tityus serrulatus to induce macrophage-derived inflammatory mediators. PLoS One 9:e88174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Ana Maria Briones (Departamento de Farmacología, Facultad de Medicina, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain) for providing help with murine peritoneal macrophage cultures and polarization. We are very grateful to Diego A. Peraza, Dr Alicia de la Cruz and Dr Teresa Gonzalez for technical and scientific assistance in patch-clamp experiments, cell transfection, isolation, culturing, polarization of murine peritoneal macrophages and data analysis.

Dalila Khemili received a scholarship from University of Sciences and Technology Hourari Boumediene, Algiers, Algeria. Ion channels laboratory (leaded by Dr. Carmen Valenzuela) received support from Ministerio de Economía, Industria y Competitividad (MINEICO) of Spain: SAF2013-45800-R, SAF2016-75021-R, CIBERCV CB/11/00222 and the European Regional Development Funds (FEDER).

Author information

Authors and Affiliations

Authors

Contributions

CV, FLD and DHT designed the study; DK performed experiments, analyzed data and drafted the paper; DK and CV interpreted and discussed the electrophysiological data; CV, FLD and DHT wrote and corrected the article.

Corresponding author

Correspondence to Fatima Laraba-Djebari.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig.

 1 Effects of Aah venom on Kir currents in murine peritoneal macrophages. Original Kir current traces recorded in resting (A) and LPS-activated macrophages (B) before and after crude venom perfusion at a final concentration of 0.2 μg/ml. Kir currents were elicited by 500 ms voltage ramp from − 140 to − 40 mV in 10 mV steps at the holding potential of − 80 mV. Current–voltage (IV) relationships obtained by plotting the current magnitude at the end of pulses in the absence (filled circles) or the presence of Aah venom (open circles) in resting (C) and LPS-activated macrophages (D). n = 6 cells/condition (TIFF 1909 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khemili, D., Valenzuela, C., Laraba-Djebari, F. et al. Differential effect of Androctonus australis hector venom components on macrophage KV channels: electrophysiological characterization. Eur Biophys J 48, 1–13 (2019). https://doi.org/10.1007/s00249-018-1323-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-018-1323-1

Keywords

Navigation