A multimodal approach for tracing lateralisation along the olfactory pathway in the honeybee through electrophysiological recordings, morpho-functional imaging, and behavioural studies

Abstract

Recent studies have revealed asymmetries between the left and right sides of the brain in invertebrate species. Here we present a review of a series of recent studies from our laboratories, aimed at tracing asymmetries at different stages along the honeybee’s (Apis mellifera) olfactory pathway. These include estimates of the number of sensilla present on the two antennae, obtained by scanning electron microscopy, as well as electroantennography recordings of the left and right antennal responses to odorants. We describe investigative studies of the antennal lobes, where multi-photon microscopy was used to search for possible morphological asymmetries between the two brain sides. Moreover, we report on recently published results obtained by two-photon calcium imaging for functional mapping of the antennal lobe aimed at comparing patterns of activity evoked by different odours. Finally, possible links to the results of behavioural tests, measuring asymmetries in single-sided olfactory memory recall, are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ades C, Ramires EN (2002) Asymmetry of leg use during prey handling in the spider Scytodes globula (Scytodidae). J Insect Behav 15:563–570. doi:10.1023/A:1016337418472

    Article  Google Scholar 

  2. Anfora G, Frasnelli E, Maccagnani B, Rogers LJ, Vallortigara G (2010) Behavioural and electrophysiological lateralization in a social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee. Behav Brain Res 206:236–239. doi:10.1016/j.bbr.2009.09.023

    PubMed  Article  Google Scholar 

  3. Biswas S, Reinhard J, Oakeshott J, Russell R, Srinivasan MV et al (2010) Sensory regulation of neuroligins and neurexin i in the honeybee brain. PLoS ONE 5(2):e9133. doi:10.1371/journal.pone.0009133

    PubMed  Article  Google Scholar 

  4. Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97:107–119. doi:10.1037/0735-7036.97.2.107

    PubMed  Article  CAS  Google Scholar 

  5. Boch R, Shearer DA, Stone BC (1962) Identification of isoamyl acetate as an active component in the sting pheromone of the honey bee. Nature 195:1018–1020. doi:10.1038/1951018b0

    PubMed  Article  CAS  Google Scholar 

  6. Boeckh J (1974) Die Reaktion olfaktorischer Neurone im Deutocerebrum von Insekten im Vergleich zu den Antwortmustern der Geruchssinneszellen. J Comp Physiol A 90:183–205. doi:10.1007/BF00694484

    Article  CAS  Google Scholar 

  7. Broca P (1861) Perte de la parole, ramollissement chronique et destruction partielle du lobe antérieur gauche du cerveau. Bull Soc Anthropol 2:235–238

    Google Scholar 

  8. Bucher D, Scholz M, Stetter M, Obermayer K, Pfluger HJ (2000) Correction methods for three-dimensional reconstructions from confocal images: I. tissue shrinking and axial scaling. J Neurosci Methods 100:135–143. doi:10.1016/S0165-0270(00)00245-4

    PubMed  Article  CAS  Google Scholar 

  9. Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18:351–357. doi:10.1016/S0896-6273(00)81237-4

    PubMed  Article  CAS  Google Scholar 

  10. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76. doi:10.1126/science.2321027

    PubMed  Article  CAS  Google Scholar 

  11. Dietz A, Humphreys J (1971) Scanning electron microscopic studies of antennal receptors of the worker honey bee, including Sensilla campaniformia. Ann Entomol Soc Amer 64:919–925

    Google Scholar 

  12. Duistermars BJ, Chow DM, Frye Ma (2009) Flies require bilateral sensory input to track odor gradients in flight. Curr Biol 19(15):1301–1307. doi:10.1016/j.cub.2009.06.022

    PubMed  Article  CAS  Google Scholar 

  13. Faber T, Joerges J, Menzel R (1999) Associative learning modifies neural representation of odours in the insect brain. Nat Neurosci 2:74–78. doi:10.1038/4576

    PubMed  Article  CAS  Google Scholar 

  14. Fernandez PC, Locatelli FF, Person-Rennell N, Deleo G, Smith BH (2009) Associative Conditioning tunes transient dynamics of early olfactory processing. J Neurosci 29:10191–10202. doi:10.1523/JNEUROSCI.1874-09.2009

    PubMed  Article  CAS  Google Scholar 

  15. Franke T (2009) In vivo 2-photon calcium imaging of olfactory interneurons in the honeybee antennal lobe. PhD thesis, Freien Universität Berlin

  16. Frasnelli E, Anfora G, Trona F, Tessarolo F, Vallortigara G (2010a) Morpho-functional asymmetry of the olfactory receptors of the honeybee (Apis mellifera). Behav Brain Res 209:221–225. doi:10.1016/j.bbr.2010.01.046

    PubMed  Article  CAS  Google Scholar 

  17. Frasnelli E, Vallortigara G, Rogers LJ (2010b) Response competition associated with right-left antennal asymmetries of new and old olfactory memory traces in honeybees. Behav Brain Res 209:36–41. doi:10.1016/j.bbr.2010.01.014

    PubMed  Article  Google Scholar 

  18. Galizia CG, Szyszka P (2008) Olfactory coding in the insect brain: molecular receptive ranges, spatial and temporal coding. Entomol Exp Appl 128(1):81–92. doi:10.1111/j.1570-7458.2007.00661.x

    Article  Google Scholar 

  19. Galizia CG, Vetter R (2004) Optical methods for analyzing odor-evoked activity in the insect brain. In: Christensen TA (ed) Advances in Insect Sensory Neuroscience. CRC press, Boca Raton, pp 349–392. doi:10.1201/9781420039429.ch13

    Google Scholar 

  20. Galizia CG, Nägler K, Hölldobler B, Menzel R (1998) Odour coding is bilaterally symmetrical in the antennal lobes of honeybees (Apis mellifera). Europ J Neurosci 10:2964–2974. doi:10.1111/j.1460-9568.1998.00303.x

    Article  CAS  Google Scholar 

  21. Galizia CG, Sachse S, Rappert A, Menzel R (1999a) The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nat Neurosci 2:473–478. doi:10.1038/8144

    PubMed  Article  CAS  Google Scholar 

  22. Galizia CG, McIlwrath SL, Menzel R (1999b) A digital three-dimensional atlas of the honeybee antennal lobe based on optical sections acquired by confocal microscopy. Cell Tissue Res 295: 383–394. http://neuro.uni-konstanz.de/23beemorph/default.html

    Google Scholar 

  23. Gelperin A, Flores J (1997) Vital staining from dye-coated microprobes identifies new olfactory interneurons for optical and electrical recording. J Neurosci Methods 72:97–108. doi:10.1016/S0165-0270(96)02169-3

    PubMed  Article  CAS  Google Scholar 

  24. Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193:801–824. doi:10.1007/s00359-007-0235-9

    Article  Google Scholar 

  25. Grynkiewicz G, Poenie M, Tsien RY (1985) A New Generation of Ca2+ Indicators with Greatly Improved Fluorescence Properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  26. Haase A, Rigosi E, Trona F, Anfora G, Vallortigara G, Antolini R, Vinegoni C (2011) In vivo two-photon imaging of the honey bee antennal lobe. Biomed Opt Express 2:131–138. doi:10.1364/BOE.2.000131

    Article  Google Scholar 

  27. Hobert O, Johnston RJ Jr, Chang S (2002) Left–right asymmetry in the nervous system: the Caenorhabditis elegans model. Nat Rev Neurosci 3:629–640. doi:10.1038/nrn897

    PubMed  Article  CAS  Google Scholar 

  28. Hourcade B, Perisse E, Devaud JM, Sandoz JC (2009) Long-term memory shapes the primary olfactory center of an insect brain. Learn Mem 16:607–615. doi:10.1101/lm.1445609

    PubMed  Article  Google Scholar 

  29. Junek S, Kludt E, Wolf F, Schild D (2010) Olfactory Coding with Patterns of Response Latencies. Neuron 67:872–884. doi:10.1016/j.neuron.2010.08.005

    PubMed  Article  CAS  Google Scholar 

  30. Kaissling KE, Thorson J (1980) Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organization. In: Sattelle DB, Hall LM, Hildebrand JG (eds) Receptors for Neurotransmitters. Hormones, and Pheromones in Insects, Elsevier/North-Holland Biomedical Press, pp 261–282

    Google Scholar 

  31. Kelber C, Rössler W, Kleineidam CJ (2006) Multiple olfactory receptor neurons and their axonal projections in the antennal lobe of the honeybee Apis mellifera. J Comp Neurol 496:395–405. doi:10.1002/cne.20930

    PubMed  Article  Google Scholar 

  32. Kells AR, Goulson D (2001) Evidence for handedness in bumblebees. J Insect Behav 14:47–55. doi:10.1023/A:1007897512570

    Article  Google Scholar 

  33. Krofczik S, Menzel R, and Nawrot MP (2009) Rapid odor processing in the honeybee antennal lobe network. Front Comput Neurosci. doi:10.3389/neuro.10.009.2008

  34. Kuwabara M (1957) Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica. J Fac Sci Hokkaido Univ Zool 13:458–464

    Google Scholar 

  35. Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3:884–895. doi:10.1038/nrn964

    PubMed  Article  CAS  Google Scholar 

  36. Letzkus P, Ribi WA, Wood JT, Zhu H, Zhang SW, Srinivasan MV (2006) Lateralization of Olfaction in the Honeybee Apis mellifera. Curr Biol 16:1471–1476. doi:10.1016/j.cub.2006.05.060

    PubMed  Article  CAS  Google Scholar 

  37. Lieke EE (1993) Optical recording of neuronal activity in the insect central nervous system: odorant coding by the antennal lobes of honeybees Eur J Neurosci 5:49–55. doi:10.1111/j.1460-9568.1993.tb00204.x

    CAS  Google Scholar 

  38. MacNeilage PF, Rogers LJ, Vallortigara G (2009) Origins of the left and right brain. Sci Am 301:60–67. doi:10.1038/scientificamerican0709-60

    PubMed  Article  Google Scholar 

  39. Matsumoto SG, Hildebrand JG (1981) Olfactory Mechanisms in the Moth Manduca sexta: Response Characteristics and Morphology of Central Neurons in the Antennal Lobes. Proc R Soc Lond B 213:249–277

    Article  CAS  Google Scholar 

  40. Menzel R, Giurfa M (2001) Cognitive architecture of a mini-brain: the honeybee. Trends Cogn Sci 5:62–71. doi:10.1016/S1364-6613(00)01601-6

    PubMed  Article  Google Scholar 

  41. Menzel R, Müller U (1996) Learning and memory in honeybees: From behavior to neural substrates. Ann Rev Neurosci 19:379–404. doi:10.1146/annurev.ne.19.030196.002115

    PubMed  Article  CAS  Google Scholar 

  42. Müller D, Abel R, Brandt R, Zöckler M, Menzel R (2002) Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. J Comp Physiol A 188:359–370. doi:10.1007/s00359-002-0310-1

    Article  Google Scholar 

  43. Nottebohm F (1970) Ontogeny of bird song. Science 167:950–956. doi:10.1126/science.167.3920.950

    PubMed  Article  CAS  Google Scholar 

  44. Pavlov IP (1927) Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. Oxford University Press, London

    Google Scholar 

  45. Peele P, Ditzen M, Menzel R, Galizia CG (2006) Appetitive odor learning does not change olfactory coding in a subpopulation of honeybee antennal lobe neurons. J Comp Physiol A 192:1083–1103. doi:10.1007/s00359-006-0152-3

    Article  CAS  Google Scholar 

  46. Reinhard J, Sinclair M, Srinivasan MV, Claudianos C (2010) Honeybees learn odour mixtures via a selection of key odorants. PLoS ONE 5:e9110. doi:10.1371/journal.pone.0009110

    PubMed  Article  Google Scholar 

  47. Rigosi E, Frasnelli E, Vinegoni C, Antolini R, Anfora G, Vallortigara G, Haase A (2011) Searching for anatomical correlates of olfactory lateralization in the honeybee antennal lobes: a morphological and behavioural study. Behav Brain Res 221:290–294. doi:10.1016/j.bbr.2011.03.015

    Google Scholar 

  48. Rogers LJ, Anson JM (1979) Lateralisation of function in the chicken forebrain. Pharmacol Biochem Be 10:679–686. doi:10.1016/0091-3057(79)90320-4

    Article  CAS  Google Scholar 

  49. Rogers LJ, Vallortigara G (2008) From antenna to antenna: lateral shift of olfactory memory recall by honeybees. PLoS ONE 3(6):e2340. doi:10.1371/journal.pone.0002340

    PubMed  Article  Google Scholar 

  50. Rogers LJ, Zucca P, Vallortigara G (2004) Advantages of having a lateralized brain. Proc Biol Sci 271(Suppl 6):S420–S422. doi:10.1098/rsbl.2004.0200

    PubMed  Article  Google Scholar 

  51. Roussel E, Sandoz JC, Giurfa M (2010) Searching for learning-dependent changes in the antennal lobe: simultaneous recording of neural activity and aversive olfactory learning in honeybees. Front Behav Neurosci 4:155. doi:10.3389/fnbeh.2010.00155

    Google Scholar 

  52. Sachse S, Rappert A, Galizia CG (1999) The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code. Eur J Neurosci 11:3970–3982. doi:10.1046/j.1460-9568.1999.00826.x

    PubMed  Article  CAS  Google Scholar 

  53. Sandoz JC, Menzel R (2001) Side-specificity of olfactory learning in the honeybee: generalization between odors and sides. Learn Mem 8:286–294. doi:10.1101/lm.41401

    PubMed  Article  CAS  Google Scholar 

  54. Sandoz JC, Galizia CG, Menzel R (2003) Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes. Neuroscience 120:1137–1148. doi:10.1016/S0306-4522(03)00384-1

    PubMed  Article  CAS  Google Scholar 

  55. Schneider D (1957) Elektrophysiologische Untersuchungen von Chemo- und Mechanorezeptoren der Antenne des Seidenspinners Bombyx mori L. J Comp Physiol A. doi:10.1007/BF00298148

  56. Sigg D, Thompson CM, Mercer AR (1997) Activity-dependent changes to the brain and behaviour of the honey bee. Apis mellifera (L.). J Neurosci 17:7148–7156

    PubMed  CAS  Google Scholar 

  57. Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–633. doi:10.1017/S0140525X05000105

    PubMed  Google Scholar 

  58. Whitehead AT, Larsen JR (1976) Ultrastructure of the contact chemoreceptors of Apis mellifera L. (Hymenoptera : Apidae). Int J Insect Morphol Embryol 5:301–315. doi:10.1016/0020-7322(76)90030-1

    Article  Google Scholar 

  59. Winnington AP, Napper RM, Mercer AR (1996) Structural plasticity of identified glomeruli in the antennal lobes of adult worker honey bee. J Comp Neurol 365:479–490. doi:10.1002/(SICI)1096-9861(19960212)365:3<479:AID-CNE10>3.0.CO;2-M

    PubMed  Article  CAS  Google Scholar 

  60. Yamagata N, Schmuker M, Szyszka P, Mizunami M, Menzel R (2009) Differential odor processing in two olfactory pathways in the honeybee. Front Syst Neurosci 3:16. doi:10.3389/neuro.06.016.2009

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work has been realised also thanks to the support from the Provincia Autonoma di Trento and the Fondazione Cassa di Risparmio di Trento e Rovereto. C.V. acknowledges Provincia Autonoma di Trento (project COMFI) and National Institutes of Health grant RO1EB006432.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Albrecht Haase.

Additional information

Special Issue: SIBPA 2011 Meeting.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haase, A., Rigosi, E., Frasnelli, E. et al. A multimodal approach for tracing lateralisation along the olfactory pathway in the honeybee through electrophysiological recordings, morpho-functional imaging, and behavioural studies. Eur Biophys J 40, 1247–1258 (2011). https://doi.org/10.1007/s00249-011-0748-6

Download citation

Keywords

  • Apis mellifera
  • Antennal lobe
  • Olfactory learning
  • Brain asymmetry
  • PER
  • SEM
  • EAG
  • Two-photon microscopy