Environment Shapes the Microbiome of the Blue Orchard Bee, Osmia lignaria

RRH: Environmental Drivers of Bee Microbiome

Abstract

Wild bees encounter environmental microbes while foraging. While environmental context affects bee diversity, little is known about it how affects the wild bee microbiome. We used field surveys in 17 urban gardens to examine whether and how variation in local and landscape habitat features shapes the microbiome of the solitary Blue Orchard Bee, Osmia lignaria. We installed O. lignaria cocoons at each site, allowed bees to emerge and forage, then collected them. We measured local features of gardens using vegetation transects and landscape features with GIS. We found that in microbiome composition between bee individuals varied by environmental features such as natural habitat, floral resources, and bee species richness. We also found that environmental features were associated with the abundance of bacterial groups important for bee health, such as Lactobacillus. Our study highlights complex interactions between environment context, bee species diversity, and the bee-associated microbes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Data Accessibility

We have uploaded our code, data, and metadata to a dryad repository at https://doi.org/10.6086/D1H094. We added sequencing data to SRA, accession #PRJNA613243.

References

  1. 1.

    Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49(1):71–92. https://doi.org/10.1146/annurevento49061802123416

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23(1):38–47. https://doi.org/10.1111/j1365-2435200801442x

    Article  Google Scholar 

  3. 3.

    Ferrari J, Darby AC, Daniell TJ, Godfray HCJ, Douglas AE (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol Entomol 29(1):60–65. https://doi.org/10.1111/j1365-2311200400574x

    Article  Google Scholar 

  4. 4.

    Henry LM, Maiden MC, Ferrari J, Godfray HCJ (2015) Insect life history and the evolution of bacterial mutualism. Ecol Lett 18(6):516–525. https://doi.org/10.1111/ele12425

    Article  PubMed  Google Scholar 

  5. 5.

    Ruokolainen L, Ikonen S, Makkonen H, Hanski I (2016) Larval growth rate is associated with the composition of the gut microbiota in the Glanville fritillary butterfly. Oecologia 181(3):895–903. https://doi.org/10.1007/s00442-016-3603-8

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Engel P, Kwong WK, McFrederick QS, Anderson KE, Barribeau SM, Chandler JA, Emery O (2016) The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. MBio 7(2):e02164–e02115. https://doi.org/10.1128/mBio02164-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Gibson CM, Hunter MS (2010) Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett 13(2):223–234. https://doi.org/10.1111/j1461-0248200901416x

    Article  PubMed  Google Scholar 

  8. 8.

    Mason CJ, Raffa KF (2014) Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ Entomol 43(3):595–604. https://doi.org/10.1603/EN14031

    Article  PubMed  Google Scholar 

  9. 9.

    Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70(1):293–300. https://doi.org/10.1128/AEM701293-3002004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lundgren JG, Lehman RM (2010) Bacterial gut symbionts contribute to seed digestion in an omnivorous beetle. PLoS One 5(5):e10831. https://doi.org/10.1371/journalpone0010831

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Wang Y, Gilbreath III TM, Kukutla P, Yan G, Xu J (2011) Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6(9):e24767. https://doi.org/10.1371/journalpone0024767

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Suenami S, Nobu MK, Miyazako R (2019) Community analysis of gut microbiota in hornets, the largest eusocial wasps, Vespa mandarinia and V. simillima. Sci Rep 9(1):1–13

    Article  Google Scholar 

  13. 13.

    Adams AS, Adams SM, Currie CR, Gillette NE, Raffa KF (2010) Geographic variation in bacterial communities associated with the red turpentine beetle (Coleoptera: Curculionidae). Environ Entomol 39:406–414. https://doi.org/10.1603/EN09221

    Article  PubMed  Google Scholar 

  14. 14.

    Coon KL, Brown MR, Strand MR (2016) Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol Ecol 25(22):5806–5826. https://doi.org/10.1111/mec13877

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Toju H, Fukatsu T (2011) Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol Ecol 20(4):853–868. https://doi.org/10.1111/j1365-294X201004980x

    Article  PubMed  Google Scholar 

  16. 16.

    Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Kim JY (2014) Insect gut bacterial diversity determined by environmental habitat diet developmental stage and phylogeny of host. Appl Environ Microbiol 80(17):5254–5264. https://doi.org/10.1128/AEM01226-14

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Tiede J, Scherber C, Mutschler J, McMahon KD, Gratton C (2017) Gut microbiomes of mobile predators vary with landscape context and species identity. Ecol Evol 7(20):8545–8557. https://doi.org/10.1002/ece33390

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts, and drivers. Trends Ecol Evol 25(6):345–353. https://doi.org/10.1016/jtree201001007

    Article  PubMed  Google Scholar 

  19. 19.

    Brown MJ, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40(3):410–416. https://doi.org/10.1051/apido/2009019

    Article  Google Scholar 

  20. 20.

    Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci 108(2):662–667. https://doi.org/10.1073/pnas1014743108

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Ricketts TH, Winfree R, Carvalheiro LG (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16(5):584–599. https://doi.org/10.1111/ele12082

    Article  PubMed  Google Scholar 

  22. 22.

    Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90(8):2068–2076. https://doi.org/10.1890/08-12451

    Article  PubMed  Google Scholar 

  23. 23.

    Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B Biol Sci 247:303–331. https://doi.org/10.1098/rspb20063721

    Article  Google Scholar 

  24. 24.

    Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vasquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein A, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314. https://doi.org/10.1111/j1461-0248200701018x

    Article  PubMed  Google Scholar 

  25. 25.

    Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20(3):619–628. https://doi.org/10.1111/j1365-294X201004959x

    Article  PubMed  Google Scholar 

  26. 26.

    Koch H, Schmid-Hempel P (2011) Bacterial communities in central European bumblebees: low diversity and high specificity. Microb Ecol 62(1):121–133. https://doi.org/10.1007/s00248-011-9854-3

    Article  PubMed  Google Scholar 

  27. 27.

    McFrederick QS, Wcislo WT, Taylor DR, Ishak HD, Dowd SE, Mueller UG (2012) Environment or kin: whence do bees obtain acidophilic bacteria? Mol Ecol 21(7):1754–1768. https://doi.org/10.1111/j1365-294X201205496x

    Article  PubMed  Google Scholar 

  28. 28.

    McFrederick QS, Thomas JM, Neff JL, Vuong HQ, Russell KA, Hale AR, Mueller UG (2017) Flowers and wild megachilid bees share microbes. Microb Ecol 73(1):188–200. https://doi.org/10.1007/s00248-016-0838-1

    Article  PubMed  Google Scholar 

  29. 29.

    Onchuru TO, Martinez AJ, Ingham CS, Kaltenpoth M (2018) Transmission of mutualistic bacteria in social and gregarious insects. Curr Op Insect Sci 1(28):50–58

    Article  Google Scholar 

  30. 30.

    Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957. https://doi.org/10.1126/science1255957

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North America bumble bees. Proc Natl Acad Sci 11(108):662–667

    Article  Google Scholar 

  32. 32.

    Dillon RJ, Vennard CT, Buckling A, Charnley AK (2005) Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett 8(12):1291–1298. https://doi.org/10.1111/j1461-0248200500828x

    Article  Google Scholar 

  33. 33.

    Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329(5988):212–215. https://doi.org/10.1126/science1188235

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Hedges LM, Brownlie JC, O'Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322(5902):702–702. https://doi.org/10.1126/science1162418

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Koch H, Schmid-Hempel P (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci 108(48):19288–19292

    CAS  Article  Google Scholar 

  36. 36.

    Forsgren E, Olofsson TC, Vásquez A, Fries I (2010) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41(1):99–108. https://doi.org/10.1051/apido/2009065

    Article  Google Scholar 

  37. 37.

    Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, Olofsson TC (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7(3):e33188. https://doi.org/10.1371/journalpone0033188

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14(6):374–384. https://doi.org/10.1038/nrmicro.2016.43

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci 109(27):11002–11007. https://doi.org/10.1073/pnas1202970109

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Homer CG, Dewitz JA, Yang L et al (2015) Completion of the 2011 National Land Cover Databse for the conterminous United States – representing a decade of land cover change information. Photogramm Eng Remote Sens 81:345–354

    Google Scholar 

  41. 41.

    Guédot C, Bosch J, Kemp WP (2009) Relationship between body size and homing ability in the genus Osmia (Hymenoptera; Megachilidae). Ecol Entomol 34(1):158–161. https://doi.org/10.1111/j1365-2311200801054x

    Article  Google Scholar 

  42. 42.

    Williams NM, Tepedino VJ (2003) Consistent mixing of near and distant resources in foraging bouts by the solitary mason bee Osmia lignaria. Behav Ecol 14(1):141–149. https://doi.org/10.1093/beheco/141141

    Article  Google Scholar 

  43. 43.

    Quistberg RD, Bichier P, Philpott SM (2016) Landscape and local correlates of bee abundance and species richness in urban gardens. Environ Entomol 45:592–601. https://doi.org/10.1093/ee/nvm025

    Article  PubMed  Google Scholar 

  44. 44.

    Plascencia M, Philpott SM (2017) Floral abundance richness and spatial distribution drive urban garden bee communities. B Entomol Res 107(5):658–667. https://doi.org/10.1017/S0007485317000153

    CAS  Article  Google Scholar 

  45. 45.

    Engel P, James RR, Koga R, Kwong WK, McFrederick QS, Moran NA (2013) Standard methods for research on Apis mellifera gut symbionts. J Apic Res 52(4):1–24. https://doi.org/10.3896/IBRA152407

    Article  Google Scholar 

  46. 46.

    Hammer TJ, Dickerson JC, Fierer N (2015) Evidence-based recommendations on storing and handling specimens for analyses of insect microbiota. Peer J 18:e1190. https://doi.org/10.7717/peerj.1190

    CAS  Article  Google Scholar 

  47. 47.

    McFrederick QS, Rehan SM (2016) Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol Ecol 25(10):2302–2311. https://doi.org/10.1111/mec13608

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson II MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s40168-018-0470-z

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Re. https://doi.org/10.1093/nar/gks1219

  52. 52.

    Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Walker AW (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12(1):87. https://doi.org/10.1186/s12915-014-0087-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7. http://aem.asm.org/ downloaded from improvements in performance and usability. Mol Biol Evol 30:772–80. https://doi.org/10.1093/molbev/mst010

  54. 54.

    Price MN, Dehal PS, Arkin AP (2010) FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    Article  Google Scholar 

  55. 55.

    Chen J, Bittinger K, Charlson ES, Hoffmann C, Lewis JD, Wu GD, Collman RG, Bushman FD, Li H (2012) Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 28:2106–2113. https://doi.org/10.1093/bioinformatics/bts342

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    R Core Team (2018) R: A language and environment for statistical computing

  57. 57.

    Fox J, Friendly GG, Graves S, Heiberger R, Monette G, Nilsson H, Ripley B, Weisberg S, Fox MJ, Suggests MA (2018) The car package. R Foundation for Statistical Computing

  58. 58.

    Anderson MJ (205) Permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland. 26:32–46

  59. 59.

    Oksanen J (2015) Vegan: an introduction to ordination URL http://www.cranr-projectorg/web/packages/vegan/vignettes/introvegan.pdf. 8:19

  60. 60.

    Wickham H (2011) ggplot2. Wiley Interdisciplinary Reviews, Computational Statistics

    Google Scholar 

  61. 61.

    Goslee S, Urban D (2017) Package ‘ecodist’ R package. version 20

  62. 62.

    Calcagno V, de Mazancourt C (2010) glmulti: an R package for easy automated model selection with (generalized) linear models). J Stat Softw 34. https://doi.org/10.18637/jssv034i12

  63. 63.

    Barton K (2012) Package ‘MuMIn’: model selection and model average based on information criteria (AICc and alike). CRAN R Project http://www.R-projectorg/

  64. 64.

    Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD (2015) Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis 26(1):27663

    PubMed  Google Scholar 

  65. 65.

    Goodrich JK, Davenport ER, Waters JL, Clark AG, Ley RE (2016) Cross-species comparisons of host genetic associations with the microbiome. Science 352(6285):532–535. https://doi.org/10.1126/scienceaad9379

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Cariveau DP, Powell JE, Koch H, Winfree R, Moran NA (2014) Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J 8(12):2369–2379. https://doi.org/10.1038/ismej201468

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Hakim RS, Baldwin K, Smagghe G (2010) Regulation of midgut growth development and metamorphosis. Annu Rev Entomol 55:593–608. https://doi.org/10.1146/annurev-ento-112408-085450

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Anderson MJ, Walsh DC (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83(4):557–574. https://doi.org/10.1890/12-2010.1

    Article  Google Scholar 

  69. 69.

    Ebert D (2013) The epidemiology and evolution of symbionts with mixed-mode transmission. Ann Rev Ecol 44:623–643. https://doi.org/10.1126/annurev-ecolsys-032513-100555

    Article  Google Scholar 

  70. 70.

    McMurdie PJ, Holmes S (2014) Waste not, want not: why rareflying microbiomne data is inadmissible. PLoS Comput Biol 10(4):e1003531

    Article  Google Scholar 

  71. 71.

    Mao W, Schuler MA, Berenbaum MR (2013) Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proc Natl Acad Sci 110:8842–8846. https://doi.org/10.1073/pnas1303884110

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Di Pasquale G, Salignon M, Le Conte Y, Belzunces L, Decourtye A, Kretzschmar A, Suchail S, Brunet JL, Alaux C (2013) Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PLoS One 5:e72016. https://doi.org/10.1371/journalpone0072016

    Article  Google Scholar 

  73. 73.

    Singh R, Levitt AL, Rajotte EG, Holmes EC, Ostiguy N, Lipkin WI, Toth AL, Cox-Foster DL (2010) RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS One 5:e14357. https://doi.org/10.1371/journalpone0014357

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Graystock P, Goulson D, Hughes WO (2015) Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc R Soc B 282(1813):20151371. https://doi.org/10.1098/rspb20151371

    Article  PubMed  Google Scholar 

  75. 75.

    Gerth M, Röthe J, Bleidorn C (2013) Tracing horizontal Wolbachia movements among bees (Anthophila): a combined approach using multilocus sequence typing data and host phylogeny. Mol Ecol 22(24):6149–6162. https://doi.org/10.1111/mec/12549

    Article  PubMed  Google Scholar 

  76. 76.

    Evans JD, Lopez DL (2004) Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J Econ Entomol 97(3):752–756. https://doi.org/10.1603/0022-0493(2004)097[0752:BPIAIR]20CO;2

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Wood TJ (2017) The effect of Agri-environment schemes on farmland bee populations (Doctoral dissertation, University of Sussex)

  78. 78.

    Borer ET, Kinkel LL, May G, Seabloom EW (2013) The world within: quantifying the determinants and outcomes of a host’s microbiome. Basic Appl Ecol 14:533–539. https://doi.org/10.1016/jbaae201308009

    Article  Google Scholar 

Download references

Acknowledgments

S. Solstice-Thomas, M. Plascencia, M. Otoshi, R. Quistberg, and S. Albuquerque surveyed wild bee communities and identified specimens. P. Bichier assisted with study design and collecting vegetation data. M. Egerer assisted with vegetation data collection. P. Graystock, H. Vuong, K. Russell, and J. Rothman provided advice for laboratory and data analysis protocols. H. Eckelhoefer provided support with sequencing. The following gardens allowed us to conduct the research at their sites: Aptos Community Garden, Beach Flats Community Garden, Berryessa Community Garden, Center for Agroecology and Sustainable Food Systems, Chinatown Community Garden, Coyote Creek Community Garden, El Jardín at Emma Prusch Park, The Forge at Santa Clara University, Giving Garden at Faith Lutheran Church, Homeless Garden Project, La Colina Community Garden, Laguna Seca Community Garden, The Live Oak Grange, MEarth at Carmel Valley Middle School, Mi Jardín Verde at All Saints’ Episcopal Church, Our Green Thumb Garden at Monterey Institute for International Studies, and Salinas Community Garden at St. George’s Episcopal Church.

Funding

Funding was provided for HC by the Heller Agroecology Award and the Daniel Gaines Award from the University of California, Santa Cruz, the Centennial Pollinator Fellowship from Garden Club of America, public backers supporting a crowdfunding campaign. Funding also provided by USDA-NIFA Award 2016-67,019-25,185 to SMP.

Author information

Affiliations

Authors

Contributions

HC acquired funding for the research, led study design, fieldwork, lab work, and coordinated manuscript writing and publication. QSM contributed to field research design, provided physical and financial access to laboratory equipment, supervised laboratory methods, and contributed to the manuscript. SMP contributed to field research design, fieldwork logistics, data analysis, and manuscript writing.

Corresponding author

Correspondence to Hamutahl Cohen.

Ethics declarations

Competing Interest

The authors declare that they have no competing interests.

Electronic Supplementary Material

ESM 1

(DOCX 612 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cohen, H., McFrederick, Q.S. & Philpott, S.M. Environment Shapes the Microbiome of the Blue Orchard Bee, Osmia lignaria. Microb Ecol (2020). https://doi.org/10.1007/s00248-020-01549-y

Download citation

Keywords

  • Microbiome
  • Bee-microbe interactions
  • Horizontal-transmission
  • Urban gardens