Investigation of On-Farm Transmission Routes for Contamination of Dairy Cows with Top 7 Escherichia coli O-Serogroups

Abstract

Shiga toxin-producing Escherichia coli (STEC) are foodborne bacterial pathogens, with cattle a significant reservoir for human infection. This study evaluated environmental reservoirs, intermediate hosts and key pathways that could drive the presence of Top 7 STEC (O157:H7, O26, O45, O103, O111, O121 and O145) on pasture-based dairy herds, using molecular and culture-based methods. A total of 235 composite environmental samples (including soil, bedding, pasture, stock drinking water, bird droppings and flies and faecal samples of dairy animals) were collected from two dairy farms, with four sampling events on each farm. Molecular detection revealed O26, O45, O103 and O121 as the most common O-serogroups, with the greatest occurrence in dairy animal faeces (> 91%), environments freshly contaminated with faeces (> 73%) and birds and flies (> 71%). STEC (79 isolates) were a minor population within the target O-serogroups in all sample types but were widespread in the farm environment in the summer samplings. Phylogenetic analysis of whole genome sequence data targeting single nucleotide polymorphisms revealed the presence of several clonal strains on a farm; a single STEC clonal strain could be found in several sample types concurrently, indicating the existence of more than one possible route for transmission to dairy animals and a high rate of transmission of STEC between dairy animals and wildlife. Overall, the findings improved the understanding of the ecology of the Top 7 STEC in open farm environments, which is required to develop on-farm intervention strategies controlling these zoonoses.

This is a preview of subscription content, log in to check access.

Fig. 1

Data Availability

DNA sequences files have been deposited as Illumina fastq at the NCBI database.

References

  1. 1.

    DebRoy C, Fratamico PM, Yan X, Baranzoni G, Liu Y, Needleman DS, Tebbs R, O'Connell CD, Allred A, Swimley M, Mwangi M, Kapur V, Raygoza Garay JA, Roberts EL, Katani R (2016) Comparison of O-antigen gene clusters of all O-Serogroups of Escherichia coli and proposal for adopting a new nomenclature for O-typing. PLoS One 11:e0147434. https://doi.org/10.1371/journal.pone.0147434

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Johnson KE, Thorpe CM, Sears CL (2006) The emerging clinical importance of non-O157 Shiga toxin-producing Escherichia coli. Clin Infect Dis 43:1587–1595. https://doi.org/10.1086/509573

    Article  PubMed  Google Scholar 

  3. 3.

    Gould LH, Mody RK, Ong KL, Clogher P, Cronquist AB, Garman KN, Lathrop S, Medus C, Spina NL, Webb TH, White PL, Wymore K, Gierke RE, Mahon BE, Griffin PM (2013) Increased recognition of non-O157 Shiga toxin–producing Escherichia coli infections in the United States during 2000–2010: epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathog Dis 10:453–460. https://doi.org/10.1089/fpd.2012.1401

    Article  PubMed  Google Scholar 

  4. 4.

    Anonymous (2011) USDA Takes new steps to fight E. coli, protect the food supply - Designation Extends Zero Tolerance Policy for E. coli O157:H7 to Six Additional E. coli Serogroups. Release No. 0400.11 USDA-FSIS Office of communication, Washington DC https://content.govdelivery.com/accounts/USDAOC/bulletins/126020

  5. 5.

    Scotland SM, Smith HR, Willshaw GA, Rowe B (1983) Vero cytotoxin production in strain of Escherichia coli is determined by genes carried on bacteriophage. Lancet 2:216. https://doi.org/10.1016/s0140-6736(83)90192-7

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Boerlin P, McEwen SA, Boerlin-Petzold F, Wilson JB, Johnson RP, Gyles CL (1999) Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J Clin Microbiol 37:497–503

    CAS  Article  Google Scholar 

  7. 7.

    Scheutz F (2014) Taxonomy meets public health: the case of Shiga toxin-producing Escherichia coli. Microbiol Spectr 2. https://doi.org/10.1128/microbiolspec.EHEC-0019-2013

  8. 8.

    Trabulsi LR, Keller R, Tardelli Gomes TA (2002) Typical and atypical enteropathogenic Escherichia coli. Emerg Infect Dis 8:508–513. https://doi.org/10.3201/eid0805.010385

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Jaros P, Cookson AL, Campbell DM, Besser TE, Shringi S, Mackereth GF, Lim E, Lopez L, Dufour M, Marshall JC, Baker MG, Hathaway S, Prattley DJ, French NP (2013) A prospective case-control and molecular epidemiological study of human cases of Shiga toxin-producing Escherichia coli in New Zealand. BMC Infect Dis 13:450. https://doi.org/10.1186/1471-2334-13-450

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Cobbold RN, Rice DH, Szymanski M, Call DR, Hancock DD (2004) Comparison of Shiga-toxigenic Escherichia coli prevalences among dairy, feedlot, and cow-calf herds in Washington state. Appl Environ Microbiol 70(7):4375–4378. https://doi.org/10.1128/AEM.70.7.4375-4378.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Monaghan Á, Byrne B, Fanning S, Sweeney T, McDowell D, Bolton DJ (2011) Serotypes and virulence profiles of non-O157 Shiga toxin-producing Escherichia coli isolates from bovine farms. Appl Environ Microbiol 77:8662–8668. https://doi.org/10.1128/AEM.06190-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Irshad H, Cookson AL, Ross CM, Jaros P, Prattley DJ, Donnison A, McBride G, Marshall J, French NP (2016) Diversity and relatedness of Shiga toxin-producing Escherichia coli and Campylobacter jejuni between farms in a dairy catchment. Epidemiol Infect 144:1406–1417. https://doi.org/10.1017/S0950268815002782

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Fremaux B, Raynaud S, Beutin L, Vernozy-Rozand C (2006) Dissemination and persistence of Shiga toxin-producing Escherichia coli (STEC) strains on French dairy farms. Vet Microbiol 117:180–191. https://doi.org/10.1016/j.vetmic.2006.04.030

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Cookson AL, Taylor SC, Attwood GT (2006) The prevalence of Shiga toxin-producing Escherichia coli in cattle and sheep in the lower North Island, New Zealand. N Z Vet J 54:28–33. https://doi.org/10.1080/00480169.2006.36600

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Jaros P, Cookson AL, Reynolds A, Prattley DJ (2016) Nationwide prevalence and risk factors for faecal carriage of Escherichia coli O157 and O26 in very young calves and adult cattle at slaughter in New Zealand. Epidemiol Infect 144:1736–1747. https://doi.org/10.1017/S0950268815003209

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Etcheverría AI, Padola NL (2013) Shiga toxin-producing Escherichia coli: factors involved in virulence and cattle colonization. Virulence 4:366–372. https://doi.org/10.4161/viru.24642

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Pearce MC, Jenkins C, Vali L, Smith AW, Knight HI, Cheasty T, Smith HR, Gunn GJ, Woolhouse MEJ, Amyes SGB, Frankel G (2004) Temporal shedding patterns and virulence factors of Escherichia coli serogroups O26, O103, O111, O145, and O157 in a cohort of beef calves and their dams. Appl Environ Microbiol 70:1708–1716. https://doi.org/10.1128/AEM.70.3.1708-1716.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Callaway TR, Edrington TS, Loneragan GH, Carr MA, Nisbet DJ (2013) Shiga toxin-producing Escherichia coli (STEC) ecology in cattle and management-based options for reducing fecal shedding. Agric Food Anal Bacteriol 3:39–69

    Google Scholar 

  19. 19.

    Lambertini E, Karns JS, Van Kessel JAS, Cao H, Schukken YH, Wolfgang DR, Smith JM, Pradhan AK (2015) Dynamics of Escherichia coli virulence factors in dairy herds and farm environments in a longitudinal study in the United States. Appl Environ Microbiol 81:4477–4488. https://doi.org/10.1128/AEM.00465-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Polifroni R, Etcheverría AI, Sanz ME, Cepeda RE, Krüger A, Lucchesi PM, Fernández D, Parma AE, Padola NL (2012) Molecular characterization of Shiga toxin-producing Escherichia coli isolated from the environment of a dairy farm. Curr Microbiol 65:337–343. https://doi.org/10.1007/s00284-012-0161-0

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Schouten JM, Graat EAM, Frankena K, van de Giessen AW, van der Zwaluw WK, de Jong MCM (2005) A longitudinal study of Escherichia coli O157 in cattle of a Dutch dairy farm and in the farm environment. Vet Microbiol 107:193–204. https://doi.org/10.1016/j.vetmic.2005.01.026

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Cobbold R, Desmarchelier P (2000) A longitudinal study of Shiga-toxigenic E. coli STEC prevalence in three Australian dairy herds. Vet Microbiol 71:125–137. https://doi.org/10.1016/S0378-1135(99)00173-X

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Shere JA, Bartlett KJ, Kaspar CW (1998) Longitudinal study of E. coli O157:H7 dissemination on four dairy farms in Wisconsin. Appl Environ Microbiol 64:1390–1399

    CAS  Article  Google Scholar 

  24. 24.

    Davis MA, Cloud-Hansen KA, Carpenter J, Hovde CJ (2005) Escherichia coli O157:H7 in environments of culture-positive cattle. Appl Environ Microbiol 71:6816–6822. https://doi.org/10.1128/AEM.71.11.6816-6822.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Fremaux B, Prigent-Combaret C, Delignette-Muller ML, Dothal M, Vernozy-Rozand C (2007) Persistence of Shiga toxin-producing Escherichia coli O26 in cow slurry. Lett Appl Microbiol 45:55–61. https://doi.org/10.1111/j.1472-765X.2007.02146.x

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Williams AP, Avery LM, Killham K, Jones DL (2005) Persistence of Escherichia coli O157 on farm surfaces under different environmental conditions. J Appl Microbiol 98:1075–1083. https://doi.org/10.1111/j.1365-2672.2004.02530.x

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Alam MJ, Zurek L (2004) Association of Escherichia coli O157:H7 with houseflies on a cattle farm. Appl Environ Microbiol 70:7578–7580. https://doi.org/10.1128/AEM.70.12.7578-7580.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Cernicchiaro N, Pearl DL, McEwen SA, Harpster L, Homan HJ, Linz GM, LeJeune JT (2012) Association of wild bird density and farm management factors with the prevalence of E. coli O157 in dairy herds in Ohio (2007–2009). Zoonoses Public Health 59:320–329. https://doi.org/10.1111/j.1863-2378.2012.01457.x

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Puri-Giri R, Ghosh A, Thomson JL, Zurek L (2017) House flies in the confined cattle environment carry non-O157 Shiga toxin-producing Escherichia coli. J Med Entomol 54:726–732. https://doi.org/10.1093/jme/tjw240

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Ross CM, Rapp D, Cave VM, Brightwell G (2019) Prevalence of Shiga toxin-producing Escherichia coli in pasture-based dairy herds. Lett Appl Microbiol 68:112–119. https://doi.org/10.1111/lam.13096

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc

  32. 32.

    Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11:485. https://doi.org/10.1186/1471-2105-11-485

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Aronesty E (2013) Comparison of sequencing utility programs. Open Bioinform J 7:1–8. https://doi.org/10.2174/1875036201307010001

    Article  Google Scholar 

  34. 34.

    Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997

  35. 35.

    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Danecek P, McCarthy SA (2017) BCFtools/csq: haplotype-aware variant consequences. Bioinformatics 33:2037–2039. https://doi.org/10.1093/bioinformatics/btx100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Seeman T, da Silva G, Bulach DM (2017). Nullarbor. https://github.com/tseemann/nullarbor

  38. 38.

    Wales WJ, Kolver ES (2017) Challenges of feeding dairy cows in Australia and New Zealand. Anim Prod Sci 57:1366–1383. https://doi.org/10.1071/AN16828

    Article  Google Scholar 

  39. 39.

    Deering AJ, Mauer LJ, Pruitt RE (2012) Internalization of E. coli O157:H7 and Salmonella spp. in plants: a review. Food Res Int 45:567–575. https://doi.org/10.1016/j.foodres.2011.06.058

    Article  Google Scholar 

  40. 40.

    Donnison AM, Cooper RN (1989) Faecal coliform decline on pasture irrigated with primary treated meat-processing effluent. N Z J Agric Res 32:105–112. https://doi.org/10.1080/00288233.1989.10423483

    Article  Google Scholar 

  41. 41.

    Browne AS, Midwinter AC, Withers H, Cookson AL, Biggs PJ, Marshall JC, Benschop J, Hathaway S, Haack NA, Akhter RN, French NP (2018) Molecular epidemiology of Shiga toxin–producing Escherichia coli (STEC) on New Zealand dairy farms: application of a culture-independent assay and whole genome sequencing. Appl Environ Microbiol 84(14):e00481–e00418. https://doi.org/10.1128/AEM.00481-18

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Ahmad A, Nagaraja TG, Zurek L (2007) Transmission of Escherichia coli O157: H7 to cattle by house flies. Prev Vet Med 80:74–81. https://doi.org/10.1016/j.prevetmed.2007.01.006

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Graczyk TK, Knight R, Gilman RH, Cranfield MR (2001) The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect 3:231–235. https://doi.org/10.1016/s1286-4579(01)01371-5

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Kobayashi M, Sasaki T, Saito N, Tamura K, Suzuki K, Watanabe H, Agui N (1999) Houseflies: not simple mechanical vectors of enterohemorrhagic Escherichia coli O157: H7. Am J Trop Med Hyg 61:625–629. https://doi.org/10.4269/ajtmh.1999.61.625

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Schmidtmann ET (1991) Suppressing immature house and stable flies in outdoor calf hutches with sand, gravel, and sawdust bedding. J Dairy Sci 74:3956–3960. https://doi.org/10.3168/jds.S0022-0302(91)78590-1

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, Lloyd-Smith JO (2017) Pathways to zoonotic spillover. Nat Rev Microbiol 15:503–510. https://doi.org/10.1038/nrmicro.2017.45

    CAS  Article  Google Scholar 

  47. 47.

    Joris MA, Verstraete K, De Reu K, De Zutter L (2011) Loss of vtx genes after the first subcultivation step of verocytotoxigenic Escherichia coli O157 and non-O157 during isolation from naturally contaminated fecal samples. Toxins 3:672–677. https://doi.org/10.3390/toxins3060672

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to express their appreciation to the farm owners and farm personnel that participated in this study; to A. McGowan for helping with the sampling; to Dr. D. Wilkinson for support with the Nullabor pipeline; Drs A. Cookson, A. Donnison and J. Mills for careful review of the manuscript and to Massey Genome Services - Massey University (Palmerston North) for sequencing.

Funding

This investigation was funded through the AgResearch SSIF and the New Zealand Meat Industry Innovation Partnership.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and microbiological analysis were performed by D. Rapp, C.M. Ross, and G. Brightwell. Genomic and statistical data analysis were performed P. Maclean and V.M. Cave. The first draft of the manuscript was written by D. Rapp and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to D. Rapp.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Statement of informed consent

Not applicable.

Consent for Publication

Funders have consented to the submission of the study to the journal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rapp, D., Ross, C.M., Maclean, P. et al. Investigation of On-Farm Transmission Routes for Contamination of Dairy Cows with Top 7 Escherichia coli O-Serogroups. Microb Ecol (2020). https://doi.org/10.1007/s00248-020-01542-5

Download citation

Keywords

  • STEC
  • Dairy
  • Environment
  • Reservoirs
  • Transmission pathways
  • Zoonoses
  • Wildlife