Skip to main content
Log in

Bacillus-Dominant Airborne Bacterial Communities Identified During Asian Dust Events

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Asian dust (AD) events have received significant attention due to their adverse effects on ecosystems and human health. However, detailed information about airborne pathogens associated with AD events is limited. This study monitored airborne bacterial communities and identified AD-specific bacteria and the potential hazards associated with these bacteria during AD events. Over a 33-month period, 40 air samples were collected under normal atmospheric conditions (non-AD events; n = 34) and during AD events (n = 6). The airborne bacterial communities in the air samples collected during non-AD events (non-AD sample) and AD events (AD sample) were evaluated using both culture-dependent and culture-independent methods. The bacterial diversity increased significantly, along with the 16S rRNA gene copy number, in AD samples (p < 0.05) and was positively correlated with PM10 concentration. High throughput sequencing of the 16S rRNA gene revealed that the relative abundance of the phylum Firmicutes increased substantially in AD samples (44.3 ± 5.0%) compared with non-AD samples (27.8 ± 4.3%). Within the phylum Firmicutes, AD samples included a greater abundance of Bacillus species (almost 23.8%) than non-AD samples (almost 13.3%). Both culture-dependent and culture-independent methods detected common predominant species closely related to Bacillus cereus during AD events. Subsequent multilocus sequence typing (MLST) and enterotoxin gene assays confirmed the presence of virulence factors in B. cereus isolates from AD samples. Furthermore, the abundance of bceT, encoding enterotoxin in B. cereus, was significantly higher in AD samples (p < 0.05). The systematic characterization of airborne bacterial communities in AD samples in this study suggests that B. cereus pose risks to public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goudie AS (2014) Desert dust and human health disorders. Environ Int 63:101–113

    Article  CAS  PubMed  Google Scholar 

  2. Uno I, Eguchi K, Yumimoto K, Takemura T, Shimizu A, Uematsu M, Liu Z, Wang Z, Hara Y, Sugimoto N (2009) Asian dust transported one full circuit around the globe. Nat Geosci 2:557–560

    Article  CAS  Google Scholar 

  3. An S, Couteau C, Luo F, Neveu J, DuBow MS (2013) Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts. Microb Ecol 66:850–860

    Article  PubMed  Google Scholar 

  4. Maki T, Hara K, Kobayashi F, Kurosaki Y, Kakikawa M, Matsuki A, Bin C, Shi G, Hasegawa H, Iwasaka Y (2015) Vertical distribution of airborne bacterial communities in an Asian-dust downwind area, Noto Peninsula. Atmos Environ 119:282–293

    Article  CAS  Google Scholar 

  5. Jeon E, Kim H, Jang K, Kim J, Kim M, Kim Y, Ka J (2011) Impact of Asian dust events on airborne bacterial community assessed by molecular analyses. Atmos Environ 45:4313–4321

    Article  CAS  Google Scholar 

  6. Yamaguchi N, Ichijo T, Sakotani A, Baba T, Nasu M (2012) Global dispersion of bacterial cells on Asian dust. Sci Rep 2:525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol 20:459–477

    Article  Google Scholar 

  8. Yoo K, Lee TK, Choi EJ, Yang J, Shukla SK, Hwang S, Park J (2017) Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: a review. J Environ Sci 51:234–247

    Article  Google Scholar 

  9. Yang CY, Chen YS, Chiu HF, Goggins WB (2005) Effects of Asian dust storm events on daily stroke admissions in Taipei, Taiwan. Environ Res 99:79–84

    Article  CAS  PubMed  Google Scholar 

  10. Ichinose T, Nishikawa M, Takano H, Sera N, Sadakane K, Mori I, Yanagisawa R, Oda T, Tamura H, Hiyoshi K, Quan H, Tomura S, Shibamoto T (2005) Pulmonary toxicity induced by intratracheal instillation of Asian yellow dust (Kosa) in mice. Regul Toxicol Pharmacol 20:48–56

    CAS  Google Scholar 

  11. Liu B, Ichinose T, He M, Kobayashi N, Maki T, Yoshida S, Yoshida Y, Arashidani K, Nishikawa M, Takano H, Sun G, Shibamoto T (2014) Lung inflammation by fungus, Bjerkandera adusta isolated from Asian sand dust (ASD) aerosol and enhancement of ovalbumin-induced lung eosinophilia by ASD and the fungus in mice. Allergy, Asthma Clin Immunol 10:10

    Article  CAS  Google Scholar 

  12. Cha S, Lee D, Jang JH, Lim S, Yang D, Seo T (2016) Alterations in the airborne bacterial community during Asian dust events occurring between February and March 2015 in South Korea. Sci Rep 6:37271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maki T, Puspitasari F, Hara K, Yamada M, Kobayashi F, Hasegawa H, Iwasaka Y (2014) Variations in the structure of airborne bacterial communities in a downwind area during Asian dust (Kosa) event. Sci Total Environ 488–489:75–84

    Article  CAS  PubMed  Google Scholar 

  14. Yoo K, Yoo H, Lee JM, Shukla SK, Park J (2018) Classification and regression tree approach for prediction of potential hazards of urban airborne bacteria during Asian dust events. Sci Rep 8:11823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yoo MS, Shin M, Kim Y, Jang M, Choi YE, Park SJ, Choi J, Lee J, Park C (2017) Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events. Chemosphere 175:269–274

    Article  CAS  PubMed  Google Scholar 

  16. Pickering J, Teo TH, Thornton RB, Kirkham LA, Zosky GR, Clifford HD (2018) Bacillus licheniformis in geogenic dust induces inflammation in respiratory epithelium. Environ Res 164:248–254

    Article  CAS  PubMed  Google Scholar 

  17. WHO (2003) Hazard characterization for pathogens in food and water: Guidelines. Food and Agriculture Organization of the United Nations, World Health Organization (WHO), Geneva

  18. USDA/EPA (2012) Microbial Risk Assessment Guideline Pathogenic Microorganisms with Focus on Food and Water, Prepared by the Interagency Microbiological Risk Assessment Guideline Workgroup, Publication numbers: USDA/FSIS/2012-001, EPA/100/J12/001

  19. Bowers RM, McLetchie S, Knight R, Fierer N (2011) Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J 5:601–612

    Article  CAS  PubMed  Google Scholar 

  20. Aw TG, Rose JB (2012) Detection of pathogens in water: from phylochips to qPCR to pyrosequencing. Curr Opin Biotechnol 23:422–430

    Article  CAS  PubMed  Google Scholar 

  21. Cai L, Zhang T (2013) Detecting human bacterial pathogens in wastewater treatment plants by a high-throughput shotgun sequencing technique. Environ Sci Technol 47:5433–5441

    Article  CAS  PubMed  Google Scholar 

  22. Frey KG, Herrera-Galeano EH, Redden CL, Luu TV, Servetas SL, Mateczun AJ, Mokashii VP, Bishop-Lilly KA (2014) Comparison of three next-generation sequencing platforms for metagenomic sequencing and identification of pathogens in blood. BMC Genomics 15:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maiden MC, Jansen van Rensburg MJ, Bray JE, Earle SG, Ford SA, Jolley KA, McCarthy ND (2013) MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 11:728–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dickson RP, Erb-Downward JR, Prescott HC, Martinez FJ, Curtis JL, Lama VN, Huffnagle GB (2014) Analysis of culture-dependent versus culture-independent techniques for identification of bacteria in clinically obtained bronchoalveolar lavage fluid. J Clin Microbiol 52:3605–3613

    Article  PubMed  PubMed Central  Google Scholar 

  25. Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shade A, Hogan CS, Klimowicz AK, Linske M, McManus PS, Handelsman J (2012) Culturing captures members of the soil rare biosphere. Environ Microbiol 14:2247–2252

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dong X, Reddy GB (2010) Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique. Bioresour Technol 101:1175–1182

    Article  CAS  PubMed  Google Scholar 

  28. Diston D, Sinreich M, Zimmermann S, Baumgartner A, Felleisen R (2015) Evaluation of molecular- and culture-dependent MST markers to detect fecal contamination and indicate viral presence in good quality groundwater. Environ Sci Technol 49:7142–7151

    Article  CAS  PubMed  Google Scholar 

  29. Sibley CD, Grinwis ME, Field TR, Eshaghurshan CS, Faria MM, Dowd SE, Parkins MD, Rabin HR, Surette MG (2011) Culture enriched molecular profiling of the cystic fibrosis airway microbiome. PLoS One 6:e22702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Radosevich JL, Wilson WJ, Shinn J, DeSantis TZ, Andersen GL (2002) Development of a high-volume aerosol collection system for the identification of airborne microorganisms. Lett Appl Microbiol 34:162–167

    Article  CAS  PubMed  Google Scholar 

  31. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wood J, Scott KP, Avguštin G, Newbold CJ, Flint HJ (1998) Estimation of the relative abundance of different Bacteroides and Prevotella ribotypes in gut samples by restriction enzyme profiling of PCR-amplified 16S rRNA gene sequences. Appl Environ Microbiol 64:3683–3689

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  34. Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins S, Robinson KG, Sayler GS (2003) Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol 37:343–351

    Article  CAS  PubMed  Google Scholar 

  35. He J, Ritalahti KM, Yang K, Koenigsberg SS, Loffler FE (2003) Detoxification of vinyl chloride to ethane coupled to growth of an anaerobic bacterium. Nature 424:62–65

    Article  CAS  PubMed  Google Scholar 

  36. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522

    Article  PubMed  Google Scholar 

  37. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohidden AS, McGrarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  PubMed  Google Scholar 

  40. Bibby K, Viau E, Peccia K (2010) Pyrosequencing for the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Res 44:4252–4260

    Article  CAS  PubMed  Google Scholar 

  41. Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR (2009) Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci 106:16393–16398

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yergeau E, Masson L, Elias M, Xiang S, Madey E, Huang H, Brooks B, Beaudette LA (2016) Comparison of methods to identify pathogens and associated virulence functional genes in biosolids from two different wastewater treatment facilities in Canada. PLoS One 11:e0153554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Priest FG, Barker M, Baillie LWJ, Holmes EC, Maiden MCJ (2004) Population structure and evolution of the Bacillus cereus group. J Bacteriol 186:7959–7970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guinebretière MH, Broussole V, Nguyen-The C (2002) Enterotoxigenic profiles of food-poisoning and food borne Bacillus cereus strains. J Clin Microbiol 40:305–3056

    Article  CAS  Google Scholar 

  45. Shannon KE, Lee DY, Trevors JT, Beaudette LA (2007) Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment. Sci Total Environ 382:121–129

    Article  CAS  PubMed  Google Scholar 

  46. Maki T, Hara K, Iwata A, Lee KC, Kawai K, Kai K, Kobayashi F, Pointing SB, Archer S, Hasegawa H, Iwasaka Y (2017) Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan) in response to Asian dust events. Atmos Chem Phys 17:11877–11897

    Article  CAS  Google Scholar 

  47. Lee JY, Park EH, Lee S, Ko G, Honda Y, Hashizume M, Deng F, Yi SM, Kim H (2017) Airborne bacterial communities in three east Asian cities of China, South Korea, and Japan. Sci Rep 7:5545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Murata K, Zhang D (2014) Transport of bacterial cells toward the Pacific in northern hemisphere westerly winds. Atmos Environ 87:138–145

    Article  CAS  Google Scholar 

  49. Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23:382–398

    Article  PubMed  PubMed Central  Google Scholar 

  50. Clavel T, Carlin F, Lairon D, Nguyen-The C, Schmitt P (2004) Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. J Appl Microbiol 97:214–219

    Article  CAS  PubMed  Google Scholar 

  51. Logan NA, Rodrigez-Diaz M (2006) Bacillus spp. and related genera. In: Gillespie SH, Hawkey PM (eds) Principles and practice of clinical bacteriology2nd edn. John Wiley and Sons, West Sussex, pp 139–158

    Chapter  Google Scholar 

  52. Kotiranta A, Lounatmaa K, Haapasalo M (2000) Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2:189–198

    Article  CAS  PubMed  Google Scholar 

  53. Beecher DJ, Pulido JS, Barney NP, Wong ACL (1995) Extracellular virulence factors in Bacillus cereus endophthalmitis: methods and implication of involvement of hemolysin BL. Infect Immun 63:632–639

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1A6A1A08025348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonhong Park.

Electronic supplementary material

ESM 1

(DOCX 1884 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, K., Han, I., Ko, K.S. et al. Bacillus-Dominant Airborne Bacterial Communities Identified During Asian Dust Events. Microb Ecol 78, 677–687 (2019). https://doi.org/10.1007/s00248-019-01348-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01348-0

Keywords

Navigation