Microbial Ecology

, Volume 78, Issue 1, pp 147–158 | Cite as

Arbuscular Mycorrhizal Fungi Alter the Community Structure of Ammonia Oxidizers at High Fertility via Competition for Soil NH4+

  • Stavros D. VeresoglouEmail author
  • Erik Verbruggen
  • Olga Makarova
  • India Mansour
  • Robin Sen
  • Matthias C. Rillig
Soil Microbiology


Nitrification represents a central process in the cycling of nitrogen (N) which in high-fertility habitats can occasionally be undesirable. Here, we explore how arbuscular mycorrhiza (AM) impacts nitrification when N availability is not limiting to plant growth. We wanted to test which of the mechanisms that have been proposed in the literature best describes how AM influences nitrification. We manipulated the growth settings of Plantago lanceolata so that we could control the mycorrhizal state of our plants. AM induced no changes in the potential nitrification rates or the estimates of ammonium oxidizing (AO) bacteria. However, we could observe a moderate shift in the community of ammonia-oxidizers, which matched the shift we saw when comparing hyphosphere to rhizosphere soil samples and mirrored well changes in the availability of ammonium in soil. We interpret our results as support that it is competition for N that drives the interaction between AM and AO. Our experiment sheds light on an understudied interaction which is pertinent to typical management practices in agricultural systems.


Ammonium oxidizers Arbuscular mycorrhiza Glomeromycota Mycorrhizal hyphosphere Nitrification potential 



We thank James Prosser for giving us the cultures of the ammonia oxidizers which we used as positive controls and for providing invaluable comments on an earlier version of the manuscript, Jens Rolff for granting access to laboratory equipment and consumables and Stefan Hempel for technical support. The project was funded by the EU-framework FP7-People project: AMNitrification: “A mechanistic analysis of the impact of arbuscular mycorrhiza on ammonia oxidizing community dynamics and nitrification potential rates in N-limited soils” awarded to SDV (Grant agreement number 300298).

Author Contributions

Conceived the study, run and harvested the experiment and assayed biochemical parameters: SDV; shared the molecular work: SDV, EV and OM; extracted hyphae from soil: IM; did the statistical analysis and bioinformatics: SDV; SDV wrote the manuscript with the help of EV, RS and MCR and everybody provided comments.

Supplementary material

248_2018_1281_MOESM1_ESM.doc (268 kb)
ESM 1 (DOC 268 kb)
248_2018_1281_MOESM2_ESM.xlsx (22 kb)
ESM 2 (XLSX 21 kb)


  1. 1.
    Aanderud ZT, Bledsoe CS (2009) Preferences for 15N-ammonium, 15N-nitrate, and 15N-glycine differ among dominant exotic and subordinate native grasses from a California oak woodland. Environ Exp Bo 65:205–209CrossRefGoogle Scholar
  2. 2.
    Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105(supp 1):11512–11519CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Amora-Lazcano E, Vázquez MM, Azcón R (1998) Response of nitrogentransforming microorganisms to arbuscular mycorrhizal fungi. Biol Fertil Soils 27:65e70CrossRefGoogle Scholar
  4. 4.
    Avrahami S, Bohannan BJA (2007) Response of Nitrosospira sp strain AF-Like ammonia oxidizers to changes in temperature, soil moisture content, and fertilizer concentration. Appl Environ Microbiol 73:1166–1173CrossRefPubMedGoogle Scholar
  5. 5.
    Banning NC, Maccarone LD, Fis LM, Murphy DV (2015) Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Sci Rep 5:11146CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bender SF, Plantenga F, Neftel A, Jocher M, Oberholzer HR, Kohl L, Giles M, Danniel TJ, van der Heijden MGA (2014) Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. ISME J 8:1336–1345CrossRefPubMedGoogle Scholar
  7. 7.
    Bohrerova Z, Stralkova R, Podesvova J, Bohrer G, Pokorny E (2004) The relationship between redox potential and nitrification under different sequences of crop rotations. Soil Tillage Res 77:25–33CrossRefGoogle Scholar
  8. 8.
    Bollmann A, Bår-Gilissen M-J, Laanbroek HJ (2002) Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 68:4751–4757CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol. 63:363–383CrossRefPubMedGoogle Scholar
  10. 10.
    Boudsocq S, Niboyet A, Lata JC, Reynaud X, Loeuille N, Mathieu J, Blouin M, Abbadie L, Barot S, Loeuille N, Mathieu J, Blouin M, Abbadie L, Barot S (2012) Plant preference for ammonium versus nitrate: a neglected determinant of ecosystem functioning? Am. Nat. 180:60–69CrossRefPubMedGoogle Scholar
  11. 11.
    Britto DT, Kronzucker HJ (2013) Ecological significance and complexity of N-source preference in plants. Ann. Bot. 112:957–963CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    BSI (1984) BS 6068–2 11, Water quality, physical, chemical and biochemical methods. Determination of ammonium, manual spectrometric method. British Standards Institute, London, p 10Google Scholar
  13. 13.
    Camenzind T, Rillig MC (2013) Extraradical arbuscular mycorrhizal fungal hyphae in an organic tropical montane forest soil. Soil Biol. Biochem. 64:96–102CrossRefGoogle Scholar
  14. 14.
    Cavagnaro TR, Jackson LE, Scow KM, Hristova KR (2007) Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil. Microb. Ecol. 54:618e626CrossRefGoogle Scholar
  15. 15.
    Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MGA (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 20:283–290CrossRefPubMedGoogle Scholar
  16. 16.
    Chen YL, Chen BD, Hu YJ, Li T, Zhang X, Hao ZP (2013) Direct and indirect influence of arbuscular mycorrhizal fungi on abundance and community structure of ammonia oxidizing bacteria and archaea in soil microcosms. Pedobiologia 56:205–212CrossRefGoogle Scholar
  17. 17.
    Cranfield DE, Glazer DE, Falkowski PG (2010) The evolution and future of earth’s nitrogen cycle. Science 330:192–196CrossRefGoogle Scholar
  18. 18.
    de Boer W, Kowalchuk GA (2001) Nitrification in acid soils: microorganisms and mechanisms. Soil Biol Biocem 33:853–866CrossRefGoogle Scholar
  19. 19.
    De Caceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574CrossRefPubMedGoogle Scholar
  20. 20.
    Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JS (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat. Geosci. 2:621–624CrossRefGoogle Scholar
  21. 21.
    Dodds WK, Bouska WW, Eitzman JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2009) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 43:12–19CrossRefPubMedGoogle Scholar
  22. 22.
    Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67:345–366Google Scholar
  24. 24.
    Eviner VT, Chapin FSIII, Vaughn GE (2006) Seasonal variations in plant species effects on soil N and P dynamics. Ecology 87:974–986CrossRefPubMedGoogle Scholar
  25. 25.
    Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61:1–10CrossRefGoogle Scholar
  26. 26.
    Faustino LI, Morettie AP, Graciano C (2015) Fertilization with urea, ammonium and nitrate produce different effects on growth, hydraulic traits and drought tolerance in Pinus taeda seedlings. Tree Physiol. 35:1062–1074CrossRefPubMedGoogle Scholar
  27. 27.
    Francis CA, Roberts KJ, Beman JM, Santoro A, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. U. S. A. 102:14683–14688CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 37:112–129CrossRefPubMedGoogle Scholar
  29. 29.
    Hao X, Jiang R, Chen T (2011) Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering. Bioinformatics 27:611–618CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Harrison AK, Bol R, Bardgett RD (2007) Preferences for different nitrogen forms by coexisting plant species and soil microbes. Ecology 88:989–999CrossRefPubMedGoogle Scholar
  31. 31.
    Hu HW, Zhang LM, Dai Y, Di HJ, He JZ (2013) pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J. Soils Sediments 13:1439–1449CrossRefGoogle Scholar
  32. 32.
    IPCC (2014) In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate Change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–1454Google Scholar
  33. 33.
    Johnson NC, Wilson GWT, Bowker MA, Wilson J, Miller RM (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc. Natl. Acad. Sci. U. S. A. 107:2093–2098CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Johnson NC, Wilson GWT, Wilson JA, Miller RM, Bowker MA (2015) Mycorrhizal phenotypes and the law of the minimum. New Phytol. 205:1473–1484CrossRefPubMedGoogle Scholar
  35. 35.
    Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143CrossRefPubMedGoogle Scholar
  36. 36.
    Kohl L, van der Heijden MGA (2016) Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biol. Biochem. 94:191–199CrossRefGoogle Scholar
  37. 37.
    Kyveryga PM, Blackmer AM, Ellsworth JW, Isla R (2004) Soil pH effects on nitrification of fall-applied anhydrous ammonia. Soil Sci Soc Am J 68:545–551CrossRefGoogle Scholar
  38. 38.
    Lam SK, Suter H, Mosier AR, Chen D (2017) Using nitrification inhibitors to mitigate agricultural N2O emission: a double-edged sword? Glob. Chang. Biol. 23:485–489CrossRefPubMedGoogle Scholar
  39. 39.
    Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefPubMedGoogle Scholar
  40. 40.
    Legendre P, Oksanen J, ter Braak CJF (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2:269–277CrossRefGoogle Scholar
  41. 41.
    Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation – a meta-analysis. Plant Soil 374:523–537CrossRefGoogle Scholar
  42. 42.
    McNaughton SJ (1977) Diversity and stability of ecological communities - comment on role of empirism in ecology. Am. Nat. 111:515–525CrossRefGoogle Scholar
  43. 43.
    Miranda MM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71CrossRefPubMedGoogle Scholar
  44. 44.
    Muyzer H, de Waal EG, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedPubMedCentralGoogle Scholar
  45. 45.
    Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411CrossRefPubMedGoogle Scholar
  46. 46.
    Oksanen J (2015) Multivariate analysis of ecological communities in R: vegan tutorial. R Package Version 1:17–27Google Scholar
  47. 47.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RBO, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package. R Package Version 2:2–1Google Scholar
  48. 48.
    Palmer MW, McGlinn DJ, Westerberg L, Milberg P (2008) Indices for determining differences in species composition: some simplifications of RDA and CCA. Ecology 89:1769–1771CrossRefPubMedGoogle Scholar
  49. 49.
    Prosser JI (2007) The ecology of nitrifying bacteria. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 223–243CrossRefGoogle Scholar
  50. 50.
    Prosser JI (2011) Soil nitrifiers and nitrification. In: Ward B, Arp D, Klotz M (eds) Nitrification. ASM Press, Washington, DCGoogle Scholar
  51. 51.
    Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 20:523–531CrossRefPubMedGoogle Scholar
  52. 52.
    Rillig MC, Field CB, Allen MF (1999) Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia 119:572–577CrossRefPubMedGoogle Scholar
  53. 53.
    Rillig MC, Wagner M, Salem M, Antunes PM, George C, Ramke H-G, Titirici M-M, Antonietti M (2010) Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Appl. Soil Ecol. 45:238–242CrossRefGoogle Scholar
  54. 54.
    Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol. 205:1385–1388CrossRefPubMedGoogle Scholar
  55. 55.
    Rillig MC, Sosa-Hernandez MA, Roy J, Aguilar-Trigueros CA, Valyi K, Lehmann A (2016) Towards an integrated mycorrhizal technology: harnessing mycorrhizae for sustainable intensification in agriculture. Front Plant Sci 7:1625CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63:4704–4712PubMedPubMedCentralGoogle Scholar
  57. 57.
    Ruser R, Schulz R (2015) The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review. J. Plant Nutr. Soil Sci. 178:171–188CrossRefGoogle Scholar
  58. 58.
    Schimel JP, Bennet J, Fierer N (2005) Microbial community compositionand soil nitrogen cycling: is there really a connection? Biological diversityand function in soils. In: Bardgett RD, Usher MB, Hopkins DW (eds). Cambridge University Press, Cambridge, pp 171–188Google Scholar
  59. 59.
    Schlesinger WH (2009) On the fate of antrhopogenic nitrogen. Proc. Natl. Acad. Sci. U. S. A. 6:203–208CrossRefGoogle Scholar
  60. 60.
    Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PlosOne 6:e27310CrossRefGoogle Scholar
  61. 61.
    Siddiky MRK, Schaller J, Caruso T, Rillig MC (2012) Arbuscular mycorrhizal fungi and collembola non-additively increase soil aggregation. Soil Biol. Biochem. 47:93–99CrossRefGoogle Scholar
  62. 62.
    Silvertown J (2004) Plant coexistence and the niche. Trends Ecol. Evol. 19:605–611CrossRefGoogle Scholar
  63. 63.
    Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62:227–250CrossRefPubMedGoogle Scholar
  64. 64.
    Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Eao IM (2007) Scope and strategies for regulation of nitrification in agricultural systems—challenges and opportunities. Critical Rev Plant Sci 25:303–335CrossRefGoogle Scholar
  65. 65.
    Tanaka Y, Yano K (2006) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247e1254Google Scholar
  66. 66.
    Thion CE, Poirel JD, Cornulier T, de Vries FT, Bardgett RD, Prosser JI, Laanbroek R (2016) Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS Microbiol. Ecol. 92(7):fiw091CrossRefPubMedGoogle Scholar
  67. 67.
    van der Heijden MGA (2010) Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91:1163–1171CrossRefPubMedGoogle Scholar
  68. 68.
    van der Krift TAJ, Berendse F (2001) The effect of plant species on soil nitrogen mineralization. J. Ecol. 89:555–561CrossRefGoogle Scholar
  69. 69.
    Venturi V, Keel C (2016) Signalling in the rhizosphere. Trends Plant Sci. 21:187–198CrossRefPubMedGoogle Scholar
  70. 70.
    Veresoglou SD, Rillig MC (2013) Accounting for the adaptation deficit of non-mycorrhizal plants in experiments. Plant Soil 366:33–34CrossRefGoogle Scholar
  71. 71.
    Veresoglou SD (2012) Arbuscular mycorrhiza prevents suppression of actual nitrification rates in the (myco) rhizosphere of Plantago lanceolata. Pedosphere 22:137–151CrossRefGoogle Scholar
  72. 72.
    Veresoglou SD, Sen R, Mamolos AP, Veresoglou DS (2011a) Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. J. Ecol. 99:1339–1349CrossRefGoogle Scholar
  73. 73.
    Veresoglou SD, Shaw LJ, Sen R (2011b) Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil. Plant Soil 340:481–490CrossRefGoogle Scholar
  74. 74.
    Veresoglou SD, Chen BD, Rillig MC (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol. Biochem. 46:53–62CrossRefGoogle Scholar
  75. 75.
    Veresoglou SD, Powell JR, Davison J, Lekberg Y, Rillig MC (2014) The Leinster and Cobbold indices improve inferences of microbial diversity. Fungal Ecol. 11(1–7):1–7CrossRefGoogle Scholar
  76. 76.
    Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl. Acad. Sci. U. S. A. 96:1463–1468CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für BiologieFreie Universität BerlinBerlinGermany
  2. 2.Department of Plant and Vegetation EcologyUniversity of AntwerpAntwerpBelgium
  3. 3.Institute of Animal Hygiene and Environmental Health, Centre for Infection MedicineFreie Universität BerlinBerlinGermany
  4. 4.Berlin-Brandenburg Institute of Advanced Biodiversity ResearchBerlinGermany
  5. 5.Division of Biology and Conservation EcologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations