Microbial Ecology

, Volume 78, Issue 1, pp 6–19 | Cite as

Adaptation to Fasting in Crucian Carp (Carassius auratus): Gut Microbiota and Its Correlative Relationship with Immune Function

  • Tongtong Li
  • Mengting Qi
  • François-Joël Gatesoupe
  • Dongcan Tian
  • Weihua Jin
  • Jun Li
  • Qiang Lin
  • Shijin WuEmail author
  • Huan LiEmail author
Microbiology of Aquatic Systems


Fasting influences the overall physiology of fish, and the knowledge how the gut microbiota, growth performances, and immune function in response to intermittent and long-term fasting is still insufficient. Here, we characterized the effects of fasting on the host-gut microbiota in crucian carp, which would enhance our insight into physiological adaptation to fasting. To achieve this, we investigated the gut microbial communities of crucian carp with different fasting stress, and corresponding immune and growth parameters. The gut microbial communities were structured into four clusters according to different fasting stress, namely one control group (feed regularly), two intermittent fasting groups (fasting period and re-feeding period, respectively), and one long-term fasting group. Intermittent fasting significantly improved the activity of superoxide dismutase (SOD) and lysozyme (LZM) (ANOVA, p < 0.05) and significantly increased alpha diversity and ecosystem stability of gut microbiota (ANOVA, p < 0.05). Gut length (GL) and condition factor (CF) showed no significant difference between the control group (CG) and intermittent fasting group under re-feeding period (RIF) (ANOVA, p = 0.11), but relative gut length (RGL) in group RIF was higher than that in the CG (ANOVA, p = 0.00). The bacterial genera Bacteroides, Akkermansia, and Erysipelotrichaceae were enriched in fishes under intermittent fasting. Two Bacteroides OTUs (OTU50 and OTU1292) correlated positively with immune (SOD, complement, and LZM) and growth (GL and RGL) parameters. These results highlight the possible interplay between growth performances, immune function, and gut microbiota in response to fasting.


Fasting Gut microbiota Crucian carp Growth performance Immune function 


Author Contributions

TL, HL, and SW designed the experiments in this study. TL and MQ performed the experiments. TL, HL, and MQ wrote the original manuscript. TL, HL, FJG, MQ, DT, JL, WJ, and SW edited the manuscript. MQ, QL, and HL contributed to the sampling and data analysis pipeline. All authors contributed to the revision of this manuscript.

Funding Information

The authors thank the support by the Fundamental Research Funds for the Central Universities (lzujbky-2018-68), Zhejiang Provincial Natural Science Foundation of China (LY18E090010), National Natural Science Foundation of China (41506165), and China Postdoctoral Science Foundation (2017M621965).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

248_2018_1275_MOESM1_ESM.pdf (327 kb)
ESM 1 (PDF 326 kb)


  1. 1.
    Snijders AM, Langley SA, Kim YM, Brislawn CJ, Noecker C, Zink EM, Fansler SJ, Casey CP, Miller DR, Huang Y, Karpen GH, Celniker SE, Brown JB, Borenstein E, Jansson JK, Metz TO, Mao JH (2016) Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome. Nat Microbiol 2:16221. CrossRefPubMedGoogle Scholar
  2. 2.
    Kreznar JH, Keller MP, Traeger LL, Rabaglia ME, Schueler KL, Stapleton DS, Zhao W, Vivas EI, Yandell BS, Broman AT, Hagenbuch B, Attie AD, Rey FE (2017) Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes. Cell Rep 18(7):1739–1750. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D (2017) Regulation of inflammation by microbiota interactions with the host. Nat Immunol 18(8):851–860. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sansone CL, Cohen J, Yasunaga A, Xu J, Osborn G, Subramanian H, Gold B, Buchon N, Cherry S (2015) Microbiota-dependent priming of antiviral intestinal immunity in Drosophila. Cell Host Microbe 18(5):571–581. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110(9):3229–3236CrossRefGoogle Scholar
  6. 6.
    Hsiao A, Ahmed AM, Subramanian S, Griffin NW, Drewry LL, Petri Jr WA, Haque R, Ahmed T, Gordon JI (2014) Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515(7527):423–426. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L, Dumas ME, Rizkalla SW, Dore J, Cani PD, Clement K (2016) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65(3):426–436. CrossRefPubMedGoogle Scholar
  8. 8.
    Beasley DE, Koltz AM, Lambert JE, Fierer N, Dunn RR (2015) The evolution of stomach acidity and its relevance to the human microbiome. PLoS One 10(7):e0134116. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schmidt VT, Smith KF, Melvin DW, Amaral-Zettler LA (2015) Community assembly of a euryhaline fish microbiome during salinity acclimation. Mol Ecol 24(10):2537–2550. CrossRefPubMedGoogle Scholar
  10. 10.
    Zarkasi KZ, Abell GC, Taylor RS, Neuman C, Hatje E, Tamplin ML, Katouli M, Bowman JP (2014) Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system. J Appl Microbiol 117(1):18–27. CrossRefPubMedGoogle Scholar
  11. 11.
    Xia JH, Lin G, Fu GH, Wan ZY, Lee M, Wang L, Liu XJ, Yue GH (2014) The intestinal microbiome of fish under starvation. BMC Genomics 15:266. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yan Q, Li J, Yu Y, Wang J, He Z, Van Nostrand JD, Kempher ML, Wu L, Wang Y, Liao L, Li X, Wu S, Ni J, Wang C, Zhou J (2016) Environmental filtering decreases with fish development for the assembly of gut microbiota. Environ Microbiol 18:4739–4754. CrossRefPubMedGoogle Scholar
  13. 13.
    Brown K, DeCoffe D, Molcan E, Gibson DL (2012) Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 4(8):1095–1119CrossRefGoogle Scholar
  14. 14.
    McCue MD (2012) Comparative physiology of fasting, starvation, and food limitation. Springer, New YorkCrossRefGoogle Scholar
  15. 15.
    Blasco J, Fernández J, Gutiérrez J (1992) Fasting and refeeding in carp, Cyprinus carpio L.: the mobilization of reserves and plasma metabolite and hormone variations. J Comp Physiol B 162(6):539–546CrossRefGoogle Scholar
  16. 16.
    Einheber A, Carter D (1966) The role of the microbial flora in uremia. I. Survival times of germfree, limited-flora, and conventionalized rats after bilateral nephrectomy and fasting. J Exp Med 123(2):239–250CrossRefGoogle Scholar
  17. 17.
    Tennant B, Malm OJ, Horowitz RE, Levenson SM (1968) Response of germfree, conventional, conventionalized and E. coli monocontaminated mice to starvation. J Nutr 94(2):151–160CrossRefGoogle Scholar
  18. 18.
    Yokota H, Mori H, Furuse M (1992) Changes in body composition of germ-free and conventional chickens during starvation. Comp Biochem Physiol Comp Physiol 103(3):565–568CrossRefGoogle Scholar
  19. 19.
    Crawford PA, Crowley JR, Sambandam N, Muegge BD, Costello EK, Hamady M, Knight R, Gordon JI (2009) Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc Natl Acad Sci U S A 106(27):11276–11281CrossRefGoogle Scholar
  20. 20.
    Ringø E, Myklebust R, Mayhew TM, Olsen RE (2007) Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 268(1):251–264CrossRefGoogle Scholar
  21. 21.
    Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N, Benecke A, Van Maele L, Sirard JC, Mueller AJ, Heikenwalder M, Macpherson AJ, Strugnell R, von Mering C, Hardt WD (2010) The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog 6(9):e1001097CrossRefGoogle Scholar
  22. 22.
    Marti A, Marcos A, Martinez JA (2001) Obesity and immune function relationships. Obes Rev 2(2):131–140CrossRefGoogle Scholar
  23. 23.
    Honjoh S, Yamamoto T, Uno M, Nishida E (2009) Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature 457(7230):726–730. CrossRefPubMedGoogle Scholar
  24. 24.
    Tettweiler G, Miron M, Jenkins M, Sonenberg N, Lasko PF (2005) Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes Dev 19(16):1840–1843. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Raffaghello L, Lee C, Safdie FM, Wei M, Madia F, Bianchi G, Longo VD (2008) Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci U S A 105(24):8215–8220. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O’Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, O’Toole PW, Molloy MG, Falvey E, Shanahan F, Cotter PD (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63(12):1913–1920. CrossRefPubMedGoogle Scholar
  28. 28.
    Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Folsch UR, Timmis KN, Schreiber S (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53(5):685–693CrossRefGoogle Scholar
  29. 29.
    Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB (2008) Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis 197(3):435–438. CrossRefPubMedGoogle Scholar
  30. 30.
    Larmonier CB, Laubitz D, Hill FM, Shehab KW, Lipinski L, Midura-Kiela MT, McFadden RM, Ramalingam R, Hassan KA, Golebiewski M, Besselsen DG, Ghishan FK, Kiela PR (2013) Reduced colonic microbial diversity is associated with colitis in NHE3-deficient mice. Am J Physiol Gastrointest Liver Physiol 305(10):G667–G677. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Li T, Li H, Gatesoupe FJ, She R, Lin Q, Yan X, Li J, Li X (2017) Bacterial signatures of “red-operculum” disease in the gut of crucian carp (Carassius auratus). Microb Ecol 74(3):510–521. CrossRefPubMedGoogle Scholar
  32. 32.
    Lee C, Longo VD (2011) Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene 30(30):3305–3316. CrossRefPubMedGoogle Scholar
  33. 33.
    Kohl KD, Amaya J, Passement CA, Dearing MD, McCue MD (2014) Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol Ecol 90(3):883–894. CrossRefPubMedGoogle Scholar
  34. 34.
    Sacristán HJ, Ansaldo M, Franco-Tadic LM, Fernández Gimenez AV, López Greco LS (2016) Long-term starvation and posterior feeding effects on biochemical and physiological responses of midgut gland of Cherax quadricarinatus juveniles (Parastacidae). PLoS One 11(3). doi:, e0150854
  35. 35.
    Pascual C, Sanchez A, Zenteno E, Cuzon G, Gabriela G, Brito R, Gelabert R, Hidalgo E, Rosas C (2006) Biochemical, physiological, and immunological changes during starvation in juveniles of Litopenaeus vannamei. Aquaculture 251(2):416–429CrossRefGoogle Scholar
  36. 36.
    Dai WF, Zhang JJ, Qiu QF, Chen J, Yang W, Ni S, Xiong JB (2018) Starvation stress affects the interplay among shrimp gut microbiota, digestion and immune activities. Fish Shellfish Immunol 80:191–199. CrossRefPubMedGoogle Scholar
  37. 37.
    Tran NT, Xiong F, Hao YT, Zhang J, Wu SG, Wang GT (2018) Starvation influences the microbiota assembly and expression of immunity-related genes in the intestine of grass carp (Ctenopharyngodon idellus). Aquaculture 489:121–129CrossRefGoogle Scholar
  38. 38.
    Tacon AGJ, Metian M (2017) Food matters: fish, income, and food supply—a comparative analysis. Rev Fish Sci Aquac 26(2):1–14Google Scholar
  39. 39.
    MoA BoF (2016) China fishery statistics yearbook 2016. Bureau of Fisheries, China Agriculture, BeijingGoogle Scholar
  40. 40.
    Ottolenghi F (2008) Capture-based aquaculture of bluefin tuna. FAO Fish Tech Pap 508:169–182Google Scholar
  41. 41.
    Starliper CE (2011) Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. J Adv Res 2(2):97–108. CrossRefGoogle Scholar
  42. 42.
    Beveridge MCM, Brummett RE (2015) Aquaculture and the environment. Freshwater fisheries ecology. Wiley, Hoboken, pp 794–803. CrossRefGoogle Scholar
  43. 43.
    Martinez-Porchas M, Martinez-Cordova LR (2012) World aquaculture: environmental impacts and troubleshooting alternatives. Sci World J 2012(2012):389623–389629. CrossRefGoogle Scholar
  44. 44.
    Ali M, Nicieza A, Wootton RJ (2003) Compensatory growth in fishes: a response to growth depression. Fish Fish 4(2):147–190CrossRefGoogle Scholar
  45. 45.
    Li T, Long M, Ji C, Shen Z, Gatesoupe FJ, Zhang X, Zhang Q, Zhang L, Zhao Y, Liu X, Li A (2016) Alterations of the gut microbiome of largemouth bronze gudgeon (Coreius guichenoti) suffering from furunculosis. Sci Rep 6:30606. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yin M (1995) Fish ecology, vol 134. vol 272. Agricultural Press of China, BeijingGoogle Scholar
  47. 47.
    Tamaki H, Wright CL, Li X, Lin Q, Hwang C, Wang S, Thimmapuram J, Kamagata Y, Liu WT (2011) Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform. PLoS One 6(9):e25263CrossRefGoogle Scholar
  48. 48.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541CrossRefGoogle Scholar
  51. 51.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267CrossRefGoogle Scholar
  52. 52.
    Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1659. CrossRefPubMedGoogle Scholar
  53. 53.
    R Core T (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  54. 54.
    Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80CrossRefGoogle Scholar
  55. 55.
    Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  56. 56.
    Kursa MB, Rudnicki WR (2010) Feature selection with the Boruta package. J Stat Softw 36(11):1–13CrossRefGoogle Scholar
  57. 57.
    Wang S, Loreau M (2014) Ecosystem stability in space: alpha, beta and gamma variability. Ecol Lett 17(8):891–901. CrossRefPubMedGoogle Scholar
  58. 58.
    Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5(10):1595–1608CrossRefGoogle Scholar
  59. 59.
    Okada T, Fukuda S, Hase K, Nishiumi S, Izumi Y, Yoshida M, Hagiwara T, Kawashima R, Yamazaki M, Oshio T, Otsubo T, Inagaki-Ohara K, Kakimoto K, Higuchi K, Kawamura YI, Ohno H, Dohi T (2013) Microbiota-derived lactate accelerates colon epithelial cell turnover in starvation-refed mice. Nat Commun 4:1654. CrossRefPubMedGoogle Scholar
  60. 60.
    Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, Mariat D, Corthier G, Dore J, Henegar C, Rizkalla S, Clement K (2010) Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59(12):3049–3057. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Goodlad RA, Wright NA (1984) The effects of starvation and refeeding on intestinal cell proliferation in the mouse. Virchows Arch B Cell Pathol Incl Mol Pathol 45(1):63–73CrossRefGoogle Scholar
  62. 62.
    Zaldua N, Naya DE (2014) Digestive flexibility during fasting in fish: a review. Comp Biochem Physiol A Mol Integr Physiol 169:7–14. CrossRefPubMedGoogle Scholar
  63. 63.
    Montgomery WL, Pollak PE (1988) Gut anatomy and pH in a Red Sea surgeonfish, Acanthurus nigrofuscus. Mar Ecol Prog Ser 44:7–13CrossRefGoogle Scholar
  64. 64.
    Hall KC, Bellwood DR (1995) Histological effects of cyanide, stress and starvation on the intestinal mucosa of Pomacentrus coelestis, a marine aquarium fish species. J Fish Biol 47(3):438–454Google Scholar
  65. 65.
    Lucký Z, Hoffman GL (1977) Methods for the diagnosis of fish diseases. Amerind, New YorkGoogle Scholar
  66. 66.
    Day RD, Tibbetts IR, Secor SM (2014) Physiological responses to short-term fasting among herbivorous, omnivorous, and carnivorous fishes. J Comp Physiol B 184(4):497–512. CrossRefPubMedGoogle Scholar
  67. 67.
    McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055PubMedGoogle Scholar
  68. 68.
    Pascual P, Pedrajas JR, Toribio F, Lopez-Barea J, Peinado J (2003) Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata). Chem Biol Interact 145(2):191–199CrossRefGoogle Scholar
  69. 69.
    Wilhelm Filho D (2007) Reactive oxygen species, antioxidants and fish mitochondria. Front Biosci 12:1229–1237CrossRefGoogle Scholar
  70. 70.
    Madia F, Wei M, Yuan V, Hu J, Gattazzo C, Pham P, Goodman MF, Longo VD (2009) Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polzeta-dependent mechanism. J Cell Biol 186(4):509–523. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Fabrizio P, Liou LL, Moy VN, Diaspro A, Valentine JS, Gralla EB, Longo VD (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163(1):35–46PubMedPubMedCentralGoogle Scholar
  72. 72.
    Catala A (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157(1):1–11. CrossRefPubMedGoogle Scholar
  73. 73.
    Abdelmegeed MA, Moon KH, Hardwick JP, Gonzalez FJ, Song BJ (2009) Role of peroxisome proliferator-activated receptor-alpha in fasting-mediated oxidative stress. Free Radic Biol Med 47(6):767–778. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zhang XJ, Yang WM, Zhang DF, Li TT, Gong XN, Li AH (2015) Does the gastrointestinal tract serve as the infectious route of Aeromonas hydrophila in crucian carp (Carassius carassius)? Aquac Res 46(1):141–154CrossRefGoogle Scholar
  75. 75.
    Ling SH, Wang XH, Lim TM, Leung KY (2001) Green fluorescent protein-tagged Edwardsiella tarda reveals portal of entry in fish. FEMS Microbiol Lett 194(2):239–243CrossRefGoogle Scholar
  76. 76.
    Yin G, Li W, Lin Q, Lin X, Lin J, Zhu Q, Jiang H, Huang Z (2014) Dietary administration of laminarin improves the growth performance and immune responses in Epinephelus coioides. Fish Shellfish Immunol 41(2):402–406. CrossRefPubMedGoogle Scholar
  77. 77.
    Grumach AS, Kirschfink M (2014) Are complement deficiencies really rare? Overview on prevalence, clinical importance and modern diagnostic approach. Mol Immunol 61(2):110–117. CrossRefPubMedGoogle Scholar
  78. 78.
    Dhabhar FS (2009) Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. Neuroimmunomodulation 16(5):300–317CrossRefGoogle Scholar
  79. 79.
    Lopez-Bueno M, Gonzalez-Jimenez E, Navarro-Prado S, Montero-Alonso MA, Schmidt-RioValle J (2014) Influence of age and religious fasting on the body composition of Muslim women living in a westernized context. Nutr Hosp 31(3):1067–1073. CrossRefPubMedGoogle Scholar
  80. 80.
    Patterson RE, Laughlin GA, LaCroix AZ, Hartman SJ, Natarajan L, Senger CM, Martinez ME, Villasenor A, Sears DD, Marinac CR, Gallo LC (2015) Intermittent fasting and human metabolic health. J Acad Nutr Diet 115(8):1203–1212. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jorgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clement K, Dore J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546. CrossRefGoogle Scholar
  82. 82.
    Costello EK, Gordon JI, Secor SM, Knight R (2010) Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J 4(11):1375–1385. CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Sonoyama K, Fujiwara R, Takemura N, Ogasawara T, Watanabe J, Ito H, Morita T (2009) Response of gut microbiota to fasting and hibernation in Syrian hamsters. Appl Environ Microbiol 75(20):6451–6456. CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JI (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307(5717):1955–1959. CrossRefPubMedGoogle Scholar
  85. 85.
    Macfarlane GT, Gibson GR (1991) Formation of glycoprotein degrading enzymes by Bacteroides fragilis. FEMS Microbiol Lett 61(2–3):289–293CrossRefGoogle Scholar
  86. 86.
    Martens EC, Chiang HC, Gordon JI (2008) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4(5):447–457. CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54(5):1469–1476. CrossRefPubMedGoogle Scholar
  88. 88.
    Zhao L (2013) The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 11(9):639–647. CrossRefPubMedGoogle Scholar
  89. 89.
    van Kessel MA, Dutilh BE, Neveling K, Kwint MP, Veltman JA, Flik G, Jetten MS, Klaren PH, den Camp HJO (2011) Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express 1(1):1–9. CrossRefGoogle Scholar
  90. 90.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107(33):14691–14696CrossRefGoogle Scholar
  91. 91.
    Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM, Montijn RC, Roeselers G (2014) Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio 5 (4). doi:
  92. 92.
    Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81(3):1031–1064CrossRefGoogle Scholar
  93. 93.
    Fung KY, Cosgrove L, Lockett T, Head R, Topping DL (2012) A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr 108(5):820–831. CrossRefPubMedGoogle Scholar
  94. 94.
    Sakata T (1987) Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br J Nutr 58(1):95–103CrossRefGoogle Scholar
  95. 95.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573. CrossRefPubMedGoogle Scholar
  96. 96.
    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110(22):9066–9071. CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Karlsson CL, Onnerfalt J, Xu J, Molin G, Ahrne S, Thorngren-Jerneck K (2012) The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring) 20(11):2257–2261. CrossRefGoogle Scholar
  98. 98.
    Conlon MA, Bird AR (2015) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7(1):17–44. CrossRefGoogle Scholar
  99. 99.
    Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, Rigo D, Fabbiano S, Stevanovic A, Hagemann S, Montet X, Seimbille Y, Zamboni N, Hapfelmeier S, Trajkovski M (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell 163(6):1360–1374. CrossRefGoogle Scholar
  100. 100.
    Wu S, Gao T, Zheng Y, Wang W, Cheng Y, Wang G (2010) Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco). Aquaculture 303(1):1–7CrossRefGoogle Scholar
  101. 101.
    Nayak SK (2010) Role of gastrointestinal microbiota in fish. Aquac Res 41(11):1553–1573CrossRefGoogle Scholar
  102. 102.
    Xing M, Hou Z, Yuan J, Liu Y, Qu Y, Liu B (2013) Taxonomic and functional metagenomic profiling of gastrointestinal tract microbiome of the farmed adult turbot (Scophthalmus maximus). FEMS Microbiol Ecol 86(3):432–443. CrossRefPubMedGoogle Scholar
  103. 103.
    Castex M, Lemaire P, Wabete N, Chim L (2010) Effect of probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress of Litopenaeus stylirostris under Vibrio nigripulchritudo challenge. Fish Shellfish Immunol 28(4):622–631. CrossRefPubMedGoogle Scholar
  104. 104.
    Namba A, Mano N, Hirose H (2007) Phylogenetic analysis of intestinal bacteria and their adhesive capability in relation to the intestinal mucus of carp. J Appl Microbiol 102(5):1307–1317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tongtong Li
    • 1
  • Mengting Qi
    • 1
  • François-Joël Gatesoupe
    • 2
  • Dongcan Tian
    • 1
  • Weihua Jin
    • 1
  • Jun Li
    • 1
  • Qiang Lin
    • 3
  • Shijin Wu
    • 1
    Email author
  • Huan Li
    • 4
    Email author
  1. 1.Department of Applied Biology, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhouChina
  2. 2.NUMEA, INRAUniversity of Pau and Pays AdourSaint Pée sur NivelleFrance
  3. 3.Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
  4. 4.Institute of Occupational Health and Environmental Health, School of Public HealthLanzhou UniversityLanzhouChina

Personalised recommendations