Advertisement

Microbial Ecology

, Volume 78, Issue 1, pp 42–56 | Cite as

Phenotyping Thermal Responses of Yeasts and Yeast-like Microorganisms at the Individual and Population Levels: Proof-of-Concept, Development and Application of an Experimental Framework to a Plant Pathogen

  • Anne-Lise BoixelEmail author
  • Ghislain Delestre
  • Jean Legeay
  • Michaël Chelle
  • Frédéric SuffertEmail author
Environmental Microbiology

Abstract

Deciphering the responses of microbial populations to spatiotemporal changes in their thermal environment is instrumental in improving our understanding of their eco-evolutionary dynamics. Recent studies have shown that current phenotyping protocols do not adequately address all dimensions of phenotype expression. Therefore, these methods can give biased assessments of sensitivity to temperature, leading to misunderstandings concerning the ecological processes underlying thermal plasticity. We describe here a new robust and versatile experimental framework for the accurate investigation of thermal performance and phenotypic diversity in yeasts and yeast-like microorganisms, at the individual and population levels. In addition to proof-of-concept, the application of this framework to the fungal wheat pathogen Zymoseptoria tritici resulted in detailed characterisations for this yeast-like microorganism of (i) the patterns of temperature-dependent changes in performance for four fitness traits; (ii) the consistency in thermal sensitivity rankings of strains between in planta and in vitro growth assessments; (iii) significant interindividual variation in thermal responses, with four principal thermotypes detected in a sample of 66 strains; and (iv) the ecological consequences of this diversity for population-level processes through pairwise competition experiments highlighting temperature-dependent outcomes. These findings extend our knowledge and ability to quantify and categorise the phenotypic heterogeneity of thermal responses. As such, they lay the foundations for further studies elucidating local adaptation patterns and the effects of temperature variations on eco-evolutionary and epidemiological processes.

Keywords

Phenotyping Responses to temperature Thermal performance curve Diversity metrics Yeast-like microorganisms Zymoseptoria tritici 

Notes

Acknowledgements

We would like to thank Alain Fortineau for designing the experimental setup used for monitoring liquid medium and wheat leaf temperatures; Marc-Henri Lebrun for kindly providing the GFP-transformed strain of Z. tritici; Laurent Falchetto, Bernard Gesret, Henriette Goyeau, Marc Leconte and Ivan Sache for their help in sampling the French Z. tritici populations used in this study; Ons El Kamel for her assistance in collecting in planta epidemiological data and Bérengère Dalmais for providing support for fluorescence microscopy.

Author Contributions

A.-L. B., M.C. and F.S. conceived and designed the study. Experiments were performed by A.-L. B., with the help of G.D. for method development and J.L. for in vitro growth monitoring of the French Z. tritici populations. A.-L. B. performed data analyses. A.-L. B., M.C. and F.S. wrote the manuscript.

Funding

This work was supported by a grant from the French National Research Agency (ANR) as part of the ‘Investissements d’Avenir’ programme (SEPTOVAR project; LabEx BASC; ANR-11-LABX-0034) and by a PhD fellowship from the French Ministry of Education and Research (MESR) awarded to A.-L. B.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

248_2018_1253_MOESM1_ESM.pdf (234 kb)
ESM 1 Optimal culture conditions for monitoring Z. tritici growth at different temperatures (PDF 234 kb)
248_2018_1253_MOESM2_ESM.pdf (545 kb)
ESM 2 List and characteristics of the 15 pre-selected mathematical models used to establish TPCs (PDF 545 kb)
248_2018_1253_MOESM3_ESM.pdf (330 kb)
ESM 3 Monitoring of spore characteristics over a four-day thermal phenotyping experiment (PDF 329 kb)
248_2018_1253_MOESM4_ESM.pdf (662 kb)
ESM 4 Temperature monitoring system in liquid culture medium in 96-well microtiter plates (PDF 662 kb)
248_2018_1253_MOESM5_ESM.pdf (662 kb)
ESM 5 Sampling and composition of the six French Z. tritici populations (PDF 662 kb)
248_2018_1253_MOESM6_ESM.pdf (536 kb)
ESM 6 Comparisons between turbidity and automated measurements of spore concentration (PDF 535 kb)

References

  1. 1.
    Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69:1875–1883.  https://doi.org/10.1128/AEM.69.4.1875-1883.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chelle M (2005) Phylloclimate or the climate perceived by individual plant organs: what is it? How to model it? What for? New Phytol. 166:781–790.  https://doi.org/10.1111/j.1469-8137.2005.01350.x CrossRefPubMedGoogle Scholar
  3. 3.
    Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, OxfordCrossRefGoogle Scholar
  4. 4.
    Bernard F, Sache I, Suffert F, Chelle M (2013) The development of a foliar fungal pathogen does react to leaf temperature! New Phytol. 198:232–240.  https://doi.org/10.1111/nph.12134 CrossRefPubMedGoogle Scholar
  5. 5.
    Sutherst RW, Constable F, Finlay KJ, Harrington R, Luck J, Zalucki MP (2011) Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip. Rev. Clim. Chang. 2:220–237.  https://doi.org/10.1002/wcc.102 CrossRefGoogle Scholar
  6. 6.
    Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, Hutchins DA, Kudela RM, Litchman E, Mulholland MR, Passow U, Strzepek RF, Whittaker KA, Yu E, Thomas MK (2013) Marine phytoplankton temperature versus growth responses from polar to tropical waters—outcome of a scientific community-wide study. PLoS One 8:e63091.  https://doi.org/10.1371/journal.pone.0063091 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am. Zool. 19:357–366.  https://doi.org/10.1093/icb/19.1.357 CrossRefGoogle Scholar
  8. 8.
    Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S, Dong Y, Harley CDG, Marshall DJ, Helmuth BS, Huey RB (2016) Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19:1372–1385.  https://doi.org/10.1111/ele.12686 CrossRefPubMedGoogle Scholar
  9. 9.
    Low-Décarie E, Boatman TG, Bennett N, Passfield W, Gavalás-Olea A, Siegel P, Geider RJ (2017) Predictions of response to temperature are contingent on model choice and data quality. Ecol Evol 7:10467–10481.  https://doi.org/10.1002/ece3.3576 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhan J, McDonald BA (2011) Thermal adaptation in the fungal pathogen Mycosphaerella graminicola. Mol. Ecol. 20:1689–1701.  https://doi.org/10.1111/j.1365-294X.2011.05023.x CrossRefPubMedGoogle Scholar
  11. 11.
    Wiser MJ, Lenski RE (2015) A comparison of methods to measure fitness in Escherichia coli. PLoS One 10:e0126210.  https://doi.org/10.1371/journal.pone.0126210 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Angilletta MJ (2006) Estimating and comparing thermal performance curves. J. Therm. Biol. 31:541–545.  https://doi.org/10.1016/j.jtherbio.2006.06.002 CrossRefGoogle Scholar
  13. 13.
    Quinn BK (2017) A critical review of the use and performance of different function types for modeling temperature-dependent development of arthropod larvae. J. Therm. Biol. 63:65–77.  https://doi.org/10.1016/j.jtherbio.2016.11.013 CrossRefPubMedGoogle Scholar
  14. 14.
    Eyal Z (1999) The Septoria tritici and Stagonospora nodorum blotch diseases of wheat. Eur. J. Plant Pathol. 105:629–641CrossRefGoogle Scholar
  15. 15.
    Suffert F, Ravigné V, Sache I (2015) Seasonal changes drive short-term selection for fitness traits in the wheat pathogen Zymoseptoria tritici. Appl. Environ. Microbiol. 81:6367–6379.  https://doi.org/10.1128/AEM.00529-15 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lendenmann MH, Croll D, Palma-Guerrero J, Stewart EL, McDonald BA (2016) QTL mapping of temperature sensitivity reveals candidate genes for thermal adaptation and growth morphology in the plant pathogenic fungus Zymoseptoria tritici. Heredity 116:384–394.  https://doi.org/10.1038/hdy.2015.111 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pariaud B, Ravigné V, Halkett F, Goyeau H, Carlier J, Lannou C (2009) Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathol. 58(3):409–424CrossRefGoogle Scholar
  18. 18.
    Ahmed HU, Mundt CC, Hoffer ME, Coakley SM (1996) Selective influence of wheat cultivars on pathogenicity of Mycosphaerella graminicola (anamorph Septoria tritici). Phytopathology 86:454–458.  https://doi.org/10.1094/Phyto-86-454 CrossRefGoogle Scholar
  19. 19.
    Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8:881–890.  https://doi.org/10.3201/eid0809.020063 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hall BG, Acar H, Nandipati A, Barlow M (2014) Growth rates made easy. Mol. Biol. Evol. 31:232–238.  https://doi.org/10.1093/molbev/mst187 CrossRefPubMedGoogle Scholar
  21. 21.
    Burnham KP, Anderson DR (2004) Model selection and multimodel inference. Springer New York, New YorkCrossRefGoogle Scholar
  22. 22.
    Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton: photosynthesis-light equation. Limnol. Oceanogr. 21:540–547.  https://doi.org/10.4319/lo.1976.21.4.0540 CrossRefGoogle Scholar
  23. 23.
    International Organization for Standardization (1994) Accuracy (trueness and precision) of measurement methods and results. ISO Standards catalogueGoogle Scholar
  24. 24.
    International Organization for Standardization (2017) Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty evaluation. ISO Standards catalogueGoogle Scholar
  25. 25.
    Butler MJ, Day AW (1998) Fungal melanins: a review. Can. J. Microbiol. 44:1115–1136.  https://doi.org/10.1139/w98-119 CrossRefGoogle Scholar
  26. 26.
    Steinberg G (2015) Cell biology of Zymoseptoria tritici: pathogen cell organization and wheat infection. Fungal Genet. Biol. 79:17–23.  https://doi.org/10.1016/j.fgb.2015.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pigliucci M (2003) Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecol. Lett. 6:265–272.  https://doi.org/10.1046/j.1461-0248.2003.00428.x CrossRefGoogle Scholar
  28. 28.
    Suffert F, Sache I, Lannou C (2013) Assessment of quantitative traits of aggressiveness in Mycosphaerella graminicola on adult wheat plants. Plant Pathol. 62:1330–1341.  https://doi.org/10.1111/ppa.12050 CrossRefGoogle Scholar
  29. 29.
    Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20:53–65.  https://doi.org/10.1016/0377-0427(87)90125-7 CrossRefGoogle Scholar
  30. 30.
    Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton. Int. 11:36–42Google Scholar
  31. 31.
    R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  32. 32.
    Pinheiro J, Bates D, DebRoy S, Sarkar D (2018) nlme: linear and nonlinear mixed effects models. Comprehensive R Archive NetworkGoogle Scholar
  33. 33.
    Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25:1–18.  https://doi.org/10.18637/jss.v025.i01 CrossRefGoogle Scholar
  34. 34.
    Hennig C (2010) fpc: flexible procedures for clustering. Comprehensive R Archive NetworkGoogle Scholar
  35. 35.
    Gauthier GM (2015) Dimorphism in fungal pathogens of mammals, plants, and insects. PLoS Pathog. 11:e1004608.  https://doi.org/10.1371/journal.ppat.1004608 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Linde CC, Zhan J, McDonald BA (2002) Population structure of Mycosphaerella graminicola: from lesions to continents. Phytopathology 92:946–955.  https://doi.org/10.1094/PHYTO.2002.92.9.946 CrossRefPubMedGoogle Scholar
  37. 37.
    Zhan J, Linde CC, Jurgens T, Merz U, Steinebrunner F, McDonald BA (2005) Variation for neutral markers is correlated with variation for quantitative traits in the plant pathogenic fungus Mycosphaerella graminicola. Mol. Ecol. 14:2683–2693.  https://doi.org/10.1111/j.1365-294x.2005.02638.x CrossRefPubMedGoogle Scholar
  38. 38.
    Farine DR, Montiglio P-O, Spiegel O (2015) From individuals to groups and back: the evolutionary implications of group phenotypic composition. Trends Ecol. Evol. 30:609–621.  https://doi.org/10.1016/j.tree.2015.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Van de Pol M (2012) Quantifying individual variation in reaction norms: how study design affects the accuracy, precision and power of random regression models. Methods Ecol. Evol. 3:268–280.  https://doi.org/10.1111/j.2041-210x.2011.00160.x CrossRefGoogle Scholar
  40. 40.
    Ferrandino FJ (2012) Time scales of inoculum production and the dynamics of the epidemic. Phytopathology 102:728–732.  https://doi.org/10.1094/PHYTO-03-12-0051-LE CrossRefPubMedGoogle Scholar
  41. 41.
    Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21:394–407.  https://doi.org/10.1111/j.1365-2435.2007.01283.x CrossRefGoogle Scholar
  42. 42.
    Zhan F, Xie Y, Zhu W, Sun D, McDonald BA, Zhan J (2016) Linear correlation analysis of Zymoseptoria tritici aggressiveness with in vitro growth rate. Phytopathology 106:1255–1261.  https://doi.org/10.1094/PHYTO-12-15-0338-R CrossRefPubMedGoogle Scholar
  43. 43.
    Paisley D, Robson GD, Denning DW (2005) Correlation between in vitro growth rate and in vivo virulence in Aspergillus fumigatus. Med. Mycol. 43:397–401.  https://doi.org/10.1080/13693780400005866 CrossRefPubMedGoogle Scholar
  44. 44.
    Niehaus AC, Angilletta MJ, Sears MW, Franklin CE, Wilson RS (2012) Predicting the physiological performance of ectotherms in fluctuating thermal environments. J. Exp. Biol. 215:694–701.  https://doi.org/10.1242/jeb.058032 CrossRefPubMedGoogle Scholar
  45. 45.
    Giraud T, Koskella B, Laine A-L (2017) Introduction: microbial local adaptation: insights from natural populations, genomics and experimental evolution. Mol. Ecol. 26:1703–1710.  https://doi.org/10.1111/mec.14091 CrossRefPubMedGoogle Scholar
  46. 46.
    Bazakos C, Hanemian M, Trontin C, Jiménez-Gómez JM, Loudet O (2017) New strategies and tools in quantitative genetics: how to go from the phenotype to the genotype. Annu. Rev. Plant Biol. 68:435–455.  https://doi.org/10.1146/annurev-arplant-042916-040820 CrossRefPubMedGoogle Scholar
  47. 47.
    Brown SDM, Wurst W, Kühn R, Hancock JM (2009) The functional annotation of mammalian genomes: the challenge of phenotyping. Annu. Rev. Genet. 43:305–333.  https://doi.org/10.1146/annurev-genet-102108-134143 CrossRefPubMedGoogle Scholar
  48. 48.
    Reed TE, Schindler DE, Waples RS (2011) Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conserv. Biol. 25:56–63.  https://doi.org/10.1111/j.1523-1739.2010.01552.x CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhan J, McDonald BA (2013) Field-based experimental evolution of three cereal pathogens using a mark-release-recapture strategy. Plant Pathol. 62:106–114.  https://doi.org/10.1111/ppa.12130 CrossRefGoogle Scholar
  50. 50.
    Fisher KJ, Lang GI (2016) Experimental evolution in fungi: an untapped resource. Fungal Genet. Biol. 94:88–94.  https://doi.org/10.1016/j.fgb.2016.06.007 CrossRefPubMedGoogle Scholar
  51. 51.
    Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8:e1000357.  https://doi.org/10.1371/journal.pbio.1000357 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UMR BIOGER, INRA, AgroParisTechUniversité Paris-SaclayThiverval-GrignonFrance
  2. 2.UMR ECOSYS, INRA, AgroParisTechUniversité Paris-SaclayThiverval-GrignonFrance

Personalised recommendations