Advertisement

Microbial Ecology

, Volume 77, Issue 3, pp 713–725 | Cite as

Cellulase−Hemicellulase Activities and Bacterial Community Composition of Different Soils from Algerian Ecosystems

  • Aicha Asma Houfani
  • Tomáš Větrovský
  • Oscar U. Navarrete
  • Martina Štursová
  • Vojtěch Tláskal
  • Robert G. Beiko
  • Nawel Boucherba
  • Petr Baldrian
  • Said Benallaoua
  • Milko A. JorqueraEmail author
Soil Microbiology
  • 332 Downloads

Abstract

Soil microorganisms are important mediators of carbon cycling in nature. Although cellulose- and hemicellulose-degrading bacteria have been isolated from Algerian ecosystems, the information on the composition of soil bacterial communities and thus the potential of their members to decompose plant residues is still limited. The objective of the present study was to describe and compare the bacterial community composition in Algerian soils (crop, forest, garden, and desert) and the activity of cellulose- and hemicellulose-degrading enzymes. Bacterial communities were characterized by high-throughput 16S amplicon sequencing followed by the in silico prediction of their functional potential. The highest lignocellulolytic activity was recorded in forest and garden soils whereas activities in the agricultural and desert soils were typically low. The bacterial phyla Proteobacteria (in particular classes α–proteobacteria, δ–proteobacteria, and γ–proteobacteria), Firmicutes, and Actinobacteria dominated in all soils. Forest and garden soils exhibited higher diversity than agricultural and desert soils. Endocellulase activity was elevated in forest and garden soils. In silico analysis predicted higher share of genes assigned to general metabolism in forest and garden soils compared with agricultural and arid soils, particularly in carbohydrate metabolism. The highest potential of lignocellulose decomposition was predicted for forest soils, which is in agreement with the highest activity of corresponding enzymes.

Keywords

Algerian soils Bacterial community Cellulases Decomposition Hemicellulases Lignocellulose 

Notes

Acknowledgements

The authors gratefully acknowledge financial support by the Ministry of Higher Education and Scientific Research (Algeria) and the General Direction for Scientific Research and Technological Development (Algeria). This work was also supported by the Ministry of Education, Youth and Sports of the Czech Republic (LM2015055). R.G. Beiko acknowledges the support of the Canada Research Chairs program. M.A. Jorquera acknowledges the project Fondecyt no. 1160302.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Žifčáková L, Větrovský T, Lombard V, Henrissat B, Howe A, Baldrian P (2017) Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome 5:1–12.  https://doi.org/10.1186/s40168-017-0340-0 Google Scholar
  2. 2.
    Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139.  https://doi.org/10.3390/biom4010117 Google Scholar
  3. 3.
    Nacke H, Engelhaupt M, Brady S, Fischer C, Tautzt J, Daniel R (2012) Identification and characterization of novel cellulolytic and hemicellulolytic genes and enzymes derived from German grassland soil metagenomes. Biotechnol Lett 34:663–675.  https://doi.org/10.1007/s10529-011-0830-2 Google Scholar
  4. 4.
    D’haeseleer P, Gladden JM, Allgaier M et al (2013) Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switchgrass. PLoS One 8:e68465.  https://doi.org/10.1371/journal.pone.0068465 Google Scholar
  5. 5.
    Cong J, Yang Y, Liu X, Lu H, Liu X, Zhou J, Li D, Yin H, Ding J, Zhang Y (2015) Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession. Sci Rep 5:1–11.  https://doi.org/10.1038/srep10007 Google Scholar
  6. 6.
    Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120.  https://doi.org/10.1128/AEM.00335-09 Google Scholar
  7. 7.
    Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351.  https://doi.org/10.1038/ismej.2010.58 Google Scholar
  8. 8.
    López-Mondéjar R, Zühlke D, Větrovský T, Becher D, Riedel K, Baldrian P (2016a) Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels 9:1–12.  https://doi.org/10.1186/s13068-016-0518-x Google Scholar
  9. 9.
    López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P (2016b) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:1–12.  https://doi.org/10.1038/srep25279 Google Scholar
  10. 10.
    Pathan SI, Žifčáková L, Ceccherini MT, Pantani OL, Větrovský T, Baldrian P (2017) Soil biology & biochemistry seasonal variation and distribution of total and active microbial community of β-glucosidase encoding genes in coniferous forest soil. Soil Biol Biochem 105:71–80.  https://doi.org/10.1016/j.soilbio.2016.11.003 Google Scholar
  11. 11.
    Bhange VP, William P, Sharma A et al (2015) Pretreatment of garden biomass using Fenton’s reagent: influence of Fe2+ and H2O2 concentrations on lignocellulose degradation. J Environ Health Sci Eng 13:1–7.  https://doi.org/10.1186/s40201-015-0167-1 Google Scholar
  12. 12.
    Menendez E, García-Fraile P, Rivas R (2015) Biotechnological applications of bacterial cellulases. AIMS Bioeng 2:163–182.  https://doi.org/10.3934/bioeng.2015.3.163 Google Scholar
  13. 13.
    Song C, Li M, Jia X, Wei Z, Zhao Y, Xi B, Zhu C, Liu D (2014) Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure. Microb Biotechnol 7:424–433.  https://doi.org/10.1111/1751-7915.12131 Google Scholar
  14. 14.
    Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3:597–611.  https://doi.org/10.3390/biom3030597 Google Scholar
  15. 15.
    Houfani AA, Větrovský T, Baldrian P, Benallaoua S (2017) Efficient screening of potential cellulases and hemicellulases produced by Bosea sp. FBZP-16 using the combination of enzyme assays and genome analysis. World J Microbiol Biotechnol 33:1–14.  https://doi.org/10.1007/s11274-016-2198-x Google Scholar
  16. 16.
    Valášková V, Šnajdr J, Bittner B, Cajthaml T, Merhautová V, Hofrichter M, Baldrian P (2007) Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biol Biochem 39:2651–2660.  https://doi.org/10.1016/j.soilbio.2007.05.023 Google Scholar
  17. 17.
    Baldrian P (2009) Microbial enzyme-catalyzed processes in soils and their analysis. Plant Soil Environ 55:370–378.  https://doi.org/10.1007/s11104-008-9731-0 Google Scholar
  18. 18.
    Sagova-Mareckova M, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J (2008) Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol 74:2902–2907.  https://doi.org/10.1128/AEM.02161-07 Google Scholar
  19. 19.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108 Suppl:4516–4522.  https://doi.org/10.1073/pnas.1000080107 Google Scholar
  20. 20.
    Caporaso JG, Lauber CL, W a W et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624.  https://doi.org/10.1038/ismej.2012.8 Google Scholar
  21. 21.
    Větrovský T, Baldrian P (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49:1027–1037.  https://doi.org/10.1007/s00374-013-0801-y Google Scholar
  22. 22.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.  https://doi.org/10.1093/bioinformatics/btq461 Google Scholar
  23. 23.
    McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217.  https://doi.org/10.1371/journal.pone.0061217 Google Scholar
  24. 24.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336.  https://doi.org/10.1038/nmeth0510-335 Google Scholar
  25. 25.
    Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821.  https://doi.org/10.1038/nbt.2676 Google Scholar
  26. 26.
    DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072.  https://doi.org/10.1128/AEM.03006-05 Google Scholar
  27. 27.
    Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620.  https://doi.org/10.1093/bioinformatics/btt593 Google Scholar
  28. 28.
    Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124.  https://doi.org/10.1093/bioinformatics/btu494 Google Scholar
  29. 29.
    Bettache A, Messis A, Copinet E et al (2017) Isolation, screening of endoglucanase producing actinomycetes and identification of the potent isolate B-PNG23. Environ Eng Manag J 16:2231–2238Google Scholar
  30. 30.
    Boucherba N, Benallaoua S, Copinet E et al (2011) Production and partial characterization of xylanase produced by Jonesia denitrificans isolated in Algerian soil. Process Biochem 46:519–525.  https://doi.org/10.1016/j.procbio.2010.10.003 Google Scholar
  31. 31.
    Bouanane-Darenfed A, Boucherba N, Bouacem K et al (2016) Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1T. Carbohydr Res 419:60–68.  https://doi.org/10.1016/j.carres.2015.10.013 Google Scholar
  32. 32.
    Navrátilová D, Větrovský T, Baldrian P (2017) Spatial heterogeneity of cellulolytic activity and fungal communities within individual decomposing Quercus petraea leaves. Fungal Ecol 27:125–133.  https://doi.org/10.1016/j.funeco.2016.08.012 Google Scholar
  33. 33.
    Papa S, Pellegrino A, Ferrigno A, Fioretto A (2007) Microbial activity of soil with different plant cover in Mediterranean area. Stud Trentini Sci Nat Acta Biol 83:227–231Google Scholar
  34. 34.
    Yeager CM, Gallegos-Graves LV, Dunbar J, Hesse CN, Daligault H, Kuske CR (2017) Polysaccharide degradation capability of Actinomycetales soil isolates from a semiarid grassland of the Colorado Plateau. Appl Environ Microbiol 83:1–19.  https://doi.org/10.1128/AEM.03020-16 Google Scholar
  35. 35.
    Větrovský T, Steffen KT, Baldrian P (2014) Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS One 9:e89108.  https://doi.org/10.1371/journal.pone.0089108 Google Scholar
  36. 36.
    Stanley D, Rejzek M, Naested H, Smedley M, Otero S, Fahy B, Thorpe F, Nash RJ, Harwood W, Svensson B, Denyer K, Field RA, Smith AM (2011) The role of alpha-glucosidase in germinating barley grains. Plant Physiol 155:932–943.  https://doi.org/10.1104/pp.110.168328 Google Scholar
  37. 37.
    Maharjan M, Sanaullah M, Razavi BS, Kuzyakov Y (2017) Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils. Appl Soil Ecol 113:22–28.  https://doi.org/10.1016/j.apsoil.2017.01.008 Google Scholar
  38. 38.
    Shi H, Li X, Gu H, Zhang Y, Huang Y, Wang L, Wang F (2013) Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum. Biotechnol Biofuels 6:1–10.  https://doi.org/10.1186/1754-6834-6-27 Google Scholar
  39. 39.
    Kielak AM, Cretoiu MS, Semenov AV, Sørensen SJ, van Elsas JD (2013) Bacterial chitinolytic communities respond to chitin and pH alteration in soil. Appl Environ Microbiol 79:263–272.  https://doi.org/10.1128/AEM.02546-12 Google Scholar
  40. 40.
    Antunes LP, Martins LF, Pereira RV, Thomas AM, Barbosa D, Lemos LN, Silva GMM, Moura LMS, Epamino GWC, Digiampietri LA, Lombardi KC, Ramos PL, Quaggio RB, de Oliveira JCF, Pascon RC, Cruz JB, da Silva AM, Setubal JC (2016) Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Sci Rep 6:1–13.  https://doi.org/10.1038/srep38915 Google Scholar
  41. 41.
    Gunina A, Kuzyakov Y (2015) Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate. Soil Biol Biochem 90:87–100.  https://doi.org/10.1016/j.soilbio.2015.07.021 Google Scholar
  42. 42.
    Bautista-Cruz A, Ortiz-Hernández YD (2015) Hydrolytic soil enzymes and their response to fertilization: a short review. Comun Sci 6:255–262.  https://doi.org/10.14295/CS.v6i3.962 Google Scholar
  43. 43.
    Knight TR, Dick RP (2004) Differentiating microbial and stabilized β-glucosidase activity relative to soil quality. Soil Biol Biochem 36:2089–2096.  https://doi.org/10.1016/j.soilbio.2004.06.007 Google Scholar
  44. 44.
    Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728.  https://doi.org/10.1128/AEM.72.3.1719 Google Scholar
  45. 45.
    Vikram S, Guerrero LD, Makhalanyane TP, le PT, Seely M, Cowan DA (2016) Metagenomic analysis provides insights into functional capacity in a hyperarid desert soil niche community. Environ Microbiol 18:1875–1888.  https://doi.org/10.1111/1462-2920.13088 Google Scholar
  46. 46.
    Connon SA, Lester ED, Shafaat HS, Obenhuber DC, Ponce A (2007) Bacterial diversity in hyperarid Atacama desert soils. J Geophys Res Biogeosci 112:1–9.  https://doi.org/10.1029/2006JG000311 Google Scholar
  47. 47.
    Felsmann K, Baudis M, Gimbel K, Kayler ZE, Ellerbrock R, Bruehlheide H, Bruckhoff J, Welk E, Puhlmann H, Weiler M, Gessler A, Ulrich A (2015) Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany. PLoS One 10:1–24.  https://doi.org/10.1371/journal.pone.0122539 Google Scholar
  48. 48.
    Masse J, Prescott CE, Renaut S, Terrat Y, Grayston SJ (2017) Plant community and nitrogen deposition as drivers of alpha and beta diversities of prokaryotes in reconstructed oil sand soils and natural boreal forest soils. Appl Environ Microbiol 83:1–17.  https://doi.org/10.1128/AEM.03319-16 Google Scholar
  49. 49.
    Partanen P, Hultman J, Paulin L, Auvinen P, Romantschuk M (2010) Bacterial diversity at different stages of the composting process. BMC Microbiol 10:1–11.  https://doi.org/10.1186/1471-2180-10-94 Google Scholar
  50. 50.
    Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81:e00063–e00016.  https://doi.org/10.1128/MMBR.00063-16 Google Scholar
  51. 51.
    Jorquera MA, Maruyama F, Ogram AV, Navarrete OU, Lagos LM, Inostroza NG, Acuña JJ, Rilling JI, de la Luz Mora M (2016) Rhizobacterial community structures associated with native plants grown in Chilean extreme environments. Microb Ecol 72:633–646.  https://doi.org/10.1007/s00248-016-0813-x Google Scholar
  52. 52.
    Jorquera MA, Inostroza NG, Lagos LM, Barra PJ, Marileo LG, Rilling JI, Campos DC, Crowley DE, Richardson AE, Mora ML (2014) Bacterial community structure and detection of putative plant growth-promoting rhizobacteria associated with plants grown in Chilean agro-ecosystems and undisturbed ecosystems. Biol Fertil Soils 50:1141–1153.  https://doi.org/10.1007/s00374-014-0935-6 Google Scholar
  53. 53.
    Jorquera MA, Shaharoona B, Nadeem SM, de la Luz Mora M, Crowley DE (2012) Plant growth-promoting Rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microb Ecol 64:1008–1017.  https://doi.org/10.1007/s00248-012-0071-5 Google Scholar
  54. 54.
    Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schöning I, Schrumpf M, Daniel R (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One 6:e17000.  https://doi.org/10.1371/journal.pone.0017000 Google Scholar
  55. 55.
    Crits-Christoph A, Robinson CK, Barnum T, Fricke W, Davila AF, Jedynak B, McKay CP, DiRuggiero J (2013) Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome 1:1–13.  https://doi.org/10.1186/2049-2618-1-28 Google Scholar
  56. 56.
    Idris H, Goodfellow M, Sanderson R, Asenjo JA, Bull AT (2017) Actinobacterial rare biospheres and dark matter revealed in habitats of the Chilean Atacama desert. Sci Rep 7:1–11.  https://doi.org/10.1038/s41598-017-08937-4 Google Scholar
  57. 57.
    Pulschen AA, Bendia AG, Fricker AD, Pellizari VH, Galante D, Rodrigues F (2017) Isolation of uncultured bacteria from Antarctica using long incubation periods and low nutritional media. Front Microbiol 8:1–12.  https://doi.org/10.3389/fmicb.2017.01346 Google Scholar
  58. 58.
    Suleiman AKA, Manoeli L, Boldo JT, Pereira MG, Roesch LFW (2013) Shifts in soil bacterial community after eight years of land-use change. Syst Appl Microbiol 36:137–144.  https://doi.org/10.1016/j.syapm.2012.10.007 Google Scholar
  59. 59.
    Tecon R, Or D (2017) Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol Rev 41:599–623.  https://doi.org/10.1093/femsre/fux039 Google Scholar
  60. 60.
    Jacobsen CS, Hjelmsø MH (2014) Agricultural soils, pesticides and microbial diversity. Curr Opin Biotechnol 27:15–20.  https://doi.org/10.1016/j.copbio.2013.09.003 Google Scholar
  61. 61.
    Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590.  https://doi.org/10.1038/nrmicro.2017.87 Google Scholar
  62. 62.
    Wang R, Zhang H, Sun L, Qi G, Chen S, Zhao X (2017) Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci Rep 7:1–10.  https://doi.org/10.1038/s41598-017-00472-6 Google Scholar
  63. 63.
    Zeng Q, Dong Y, An S (2016) Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau, China. PLoS One 11:1–17.  https://doi.org/10.1371/journal.pone.0152894 Google Scholar
  64. 64.
    Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631.  https://doi.org/10.1073/pnas.0507535103 Google Scholar
  65. 65.
    Li Y, Chen L, Wen H, Zhou T, Zhang T, Gao X (2014) 454 Pyrosequencing analysis of bacterial diversity revealed by a comparative study of soils from mining subsidence and reclamation areas. J Microbiol Biotechnol 24:313–323.  https://doi.org/10.4014/jmb.1309.09001 Google Scholar
  66. 66.
    Alessi AM, Bird SM, Bennett JP, Oates NC, Li Y, Dowle AA, Polikarpov I, Young JPW, McQueen-Mason SJ, Bruce NC (2017) Revealing the insoluble metasecretome of lignocellulose-degrading microbial communities. Sci Rep 7:1–10.  https://doi.org/10.1038/s41598-017-02506-5 Google Scholar
  67. 67.
    Darjany LE, Whitcraft CR, Dillon JG (2014) Lignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing. Front Microbiol 5:1–9.  https://doi.org/10.3389/fmicb.2014.00263 Google Scholar
  68. 68.
    Heiss-Blanquet S, Fayolle-Guichard F, Lombard V, Hébert A, Coutinho PM, Groppi A, Barre A, Henrissat B (2016) Composting-like conditions are more efficient for enrichment and diversity of organisms containing cellulase-encoding genes than submerged cultures. PLoS One 11:1–22.  https://doi.org/10.1371/journal.pone.0167216 Google Scholar
  69. 69.
    Lopes LD, Pereira e Silva M d C, Andreote FD (2016) Bacterial abilities and adaptation toward the rhizosphere colonization. Front Microbiol 7:1–13.  https://doi.org/10.3389/fmicb.2016.01341 Google Scholar
  70. 70.
    Mickan BS, Abbott LK, Fan J, Hart MM, Siddique KHM, Solaiman ZM, Jenkins SN (2017) Application of compost and clay under water-stressed conditions influences functional diversity of rhizosphere bacteria. Biol Fertil Soils 54:55–70.  https://doi.org/10.1007/s00374-017-1238-5 Google Scholar
  71. 71.
    Wang K, Mao H, Li X (2018) Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent. Bioresour Technol 249:527–535.  https://doi.org/10.1016/j.biortech.2017.10.034 Google Scholar
  72. 72.
    Martins LF, Antunes LP, Pascon RC, de Oliveira JCF, Digiampietri LA, Barbosa D, Peixoto BM, Vallim MA, Viana-Niero C, Ostroski EH, Telles GP, Dias Z, da Cruz JB, Juliano L, Verjovski-Almeida S, da Silva AM, Setubal JC (2013) Metagenomic analysis of a tropical composting operation at the São Paulo Zoo Park reveals diversity of biomass degradation functions and organisms. PLoS One 8:e61928.  https://doi.org/10.1371/journal.pone.0061928 Google Scholar
  73. 73.
    Jiménez DJ, Dini-andreote F, Van Elsas JD (2014) Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnol Biofuels 7:1–17.  https://doi.org/10.1186/1754-6834-7-92 Google Scholar
  74. 74.
    Horwath W (2015) Chapter 12 Carbon Cycling: The Dynamics and Formation of Organic Matter. In: Soil Microbiology, Ecology and Biochemistry (4th Edition) Elsevier, pp 339–382.  https://doi.org/10.1016/B978-0-12-415955-6.00012-8

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Aicha Asma Houfani
    • 1
    • 2
  • Tomáš Větrovský
    • 2
  • Oscar U. Navarrete
    • 3
    • 4
  • Martina Štursová
    • 2
  • Vojtěch Tláskal
    • 2
  • Robert G. Beiko
    • 5
  • Nawel Boucherba
    • 1
  • Petr Baldrian
    • 2
  • Said Benallaoua
    • 1
  • Milko A. Jorquera
    • 3
    • 4
    Email author
  1. 1.Laboratoire de Microbiologie Appliquée (LMA), Département de Microbiologie, Faculté des Sciences de la Nature et de la VieUniversité de BejaiaBejaiaAlgérie
  2. 2.Laboratory of Environmental Microbiology, Institute of Microbiology of the CASPraha 4Czech Republic
  3. 3.Laboratorio de Ecología Microbiana Aplicada, Departmento de Ciencias Químicas y Recursos NaturalesUniversidad de La FronteraTemucoChile
  4. 4.Scientific and Biotechnological Bioresource NucleusUniversidad de La FronteraTemucoChile
  5. 5.Faculty of Computer ScienceDalhousie UniversityHalifaxCanada

Personalised recommendations