Microbial Ecology

, Volume 77, Issue 3, pp 607–615 | Cite as

Abiotic and Biotic Factors Affecting the Ingestion Rates of Mixotrophic Nanoflagellates (Haptophyta)

  • Ya-Fan Chan
  • Kuo-Ping ChiangEmail author
  • Yun Ku
  • Gwo-Ching Gong
Environmental Microbiology


Mixotrophic haptophytes comprise one of several important groups of mixotrophic nanoflagellates in the pelagic environment. This study aimed to investigate if phagotrophy in mixotrophic haptophytes is regulated by light or other factors in the surface (SE) and bottom (BE) of the euphotic zone in the subtropical northwestern Pacific Ocean. We estimated the rates of bacterial ingestion by haptophytes using fluorescently labeled bacteria (FLBs) and fluorescence in situ hybridization. Haptophyte diversity and abundance were also investigated in the same sampling area. The annual mean abundance of haptophytes was 419 ± 85.6 cells mL−1 in both SE and BE. Cells 3–5 μm in size were the dominant group in all haptophytes and accounted for majority of bacteria standing stock removed by haptophytes (53%). Most haptophyte ingestion rates (IRs) were not significantly different between the two layers (average SE ingestion rate: 12.5 ± 2.29 bac Hap−1 h−1; BE: 14.7 ± 3.03 bac Hap−1 h−1). Furthermore, the haptophyte IRs were negatively correlated with nitrate concentrations in the SE and positively correlated with bacterial abundances in the BE, which accounts for the significantly high IRs in August 2012 and 2013. These findings imply that mixotrophic haptophytes in this region had different factors affecting phagotrophy to adapt to the ambient light intensity alterations between SE and BE.


Mixotrophy Haptophytes Ingestion rate Fluorescence in situ hybridization Fluorescently labeled bacteria 



We would like to thank Dr. Chih-Ching Chung, from Institute of Marine Environment and Ecology in National Taiwan Ocean University, for giving the molecular technology support and Dr. Sen-Lin Tang, from Biodiversity Research Center in Academia Sinica, for valuable discussion.


This study was supported by three grants from the Ministry of Science and Technology, Taiwan. The grant numbers are MOST 103-2811-M-019-00, MOST 104-2811-M-019-006, and NSC 101-2611-M-019-015-MY3.

Supplementary material

248_2018_1249_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1042 kb)


  1. 1.
    Sanders RW (1991) Mixotrophic protists in marine and fresh-water ecosystems. J Protozool 38:76–81. CrossRefGoogle Scholar
  2. 2.
    Arenovski AL, Lim EL, Caron DA (1995) Mixotrophic nanoplankton in oligotrophic surface waters of the Sargasso Sea may employ phagotrophy to obtain major nutrients. J Plankton Res 17:801–820. CrossRefGoogle Scholar
  3. 3.
    Jardillier L, Zubkov MV, Pearman J, Scanlan DJ (2010) Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical Northeast Atlantic Ocean. ISME J 4:1180–1192CrossRefGoogle Scholar
  4. 4.
    Nygaard K, Tobiesen A (1993) Bacterivory in algae - a survival strategy during nutrient limitation. Limnol Oceanogr 38:273–279CrossRefGoogle Scholar
  5. 5.
    Tillmann U (2003) Kill and eat your predator: a winning strategy of the planktonic flagellate Prymnesium parvum. Aquat Microb Ecol 32:73–84CrossRefGoogle Scholar
  6. 6.
    Elser JJ, Hessen DO (2005) Biosimplicity via stoichiometry: the evolution of food-web structure and processes. Aquatic food webs: an ecosystem approach. Oxford University Press, Oxford, pp 7–18Google Scholar
  7. 7.
    Sanders RW, Berninger U-G, Lim EL, Kemp PF, Caron DA (2000) Heterotrophic and mixotrophic nanoplankton predation on picoplankton in the Sargasso Sea and on Georges Bank. Mar Ecol Prog Ser 192:103–118CrossRefGoogle Scholar
  8. 8.
    Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH, Scanlan DJ, Zubkov MV (2012) Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Natl Acad Sci 109:5756–5760. CrossRefGoogle Scholar
  9. 9.
    Zubkov MV, Tarran GA (2008) High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 455:224–226CrossRefGoogle Scholar
  10. 10.
    Tsai A-Y, Gong G-C, Sanders RW, Chen W-H, Chao C-F, Chiang K-P (2011) Importance of bacterivory by pigmented and heterotrophic nanoflagellates during the warm season in a subtropical western Pacific coastal ecosystem. Aquat Microb Ecol 63:9–18CrossRefGoogle Scholar
  11. 11.
    Jones H, Leadbeater B, Green J (1994) Mixotrophy in haptophytes. Syst Assoc Spec Vol 51:247–247Google Scholar
  12. 12.
    Burkholder JM, Glibert PM, Skelton HM (2008) Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77–93CrossRefGoogle Scholar
  13. 13.
    Mitra A, Flynn KJ, Burkholder JM, Berge T, Calbet A, Raven JA, Graneli E, Glibert PM, Hansen PJ, Stoecker DK, Thingstad F, Tillmann U, Vage S, Wilken S, Zubkov MV (2014) The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11:995–1005. CrossRefGoogle Scholar
  14. 14.
    Unrein F, Gasol JM, Not F, Forn I, Massana R (2014) Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J 8:164–176. CrossRefGoogle Scholar
  15. 15.
    Frias-Lopez J, Thompson A, Waldbauer J, Chisholm SW (2009) Use of stable isotope-labelled cells to identify active grazers of picocyanobacteria in ocean surface waters. Environ Microbiol 11:512–525CrossRefGoogle Scholar
  16. 16.
    Bittner L, Gobet A, Audic S, Romac S, Egge ES, Santini S, Ogata H, Probert I, Edvardsen B, Vargas C (2013) Diversity patterns of uncultured haptophytes unravelled by pyrosequencing in Naples Bay. Mol Ecol 22:87–101CrossRefGoogle Scholar
  17. 17.
    Moon-van der Staay SY, van der Staay GW, Guillou L, Vaulot D, Claustre H, Medlin LK (2000) Abundance and diversity of prymnesiophytes in the picoplankton community from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnol Oceanogr 45:98–109CrossRefGoogle Scholar
  18. 18.
    Simon M, López-García P, Moreira D, Jardillier L (2013) New haptophyte lineages and multiple independent colonizations of freshwater ecosystems. Environ Microbiol Rep 5:322–332CrossRefGoogle Scholar
  19. 19.
    Lin Y-C, Chung C-C, Gong G-C, Chiang K-P (2014) Diversity and abundance of haptophytes in the East China Sea. Aquat Microb Ecol 72:227–240CrossRefGoogle Scholar
  20. 20.
    Chan YF, Tsai AY, Chiang KP, Hsieh CH (2009) Pigmented nanoflagellates grazing on Synechococcus: seasonal variations and effect of flagellate size in the coastal ecosystem of subtropical western Pacific. Microb Ecol 58:548–557. CrossRefGoogle Scholar
  21. 21.
    Tsai A-Y, Chiang K-P, Chan Y-F, Lin Y-C, Chang J (2007) Pigmented nanoflagellates in the coastal western subtropical Pacific are important grazers on Synechococcus populations. J Plankton Res 29:71–77CrossRefGoogle Scholar
  22. 22.
    Tsai A-Y, Chiang K-P, Chang J, Gong G-C (2008) Seasonal variations in trophic dynamics of nanoflagellates and picoplankton in coastal waters of the western subtropical Pacific Ocean. Aquat Microb Ecol 51:263–274CrossRefGoogle Scholar
  23. 23.
    Carvalho WF, Granéli E (2010) Contribution of phagotrophy versus autotrophy to Prymnesium parvum growth under nitrogen and phosphorus sufficiency and deficiency. Harmful Algae 9:105–115CrossRefGoogle Scholar
  24. 24.
    Cabrerizo MJ, Medina-Sánchez JM, Dorado-García I, Villar-Argaiz M, Carrillo P (2017) Rising nutrient-pulse frequency and high UVR strengthen microbial interactions. Sci Rep 7:​43615Google Scholar
  25. 25.
    Stoecker DK, Hansen PJ, Caron DA, Mitra A (2017) Mixotrophy in the marine plankton. Annu Rev Mar Sci 9:311–335CrossRefGoogle Scholar
  26. 26.
    Jones HL, Leadbeater B, Green J (1993) Mixotrophy in marine species of Chrysochromulina (Prymnesiophyceae): ingestion and digestion of a small green flagellate. J Mar Biol Assoc U K 73:283–296CrossRefGoogle Scholar
  27. 27.
    Jones H (1997) A classification of mixotrophic protists based on their behaviour. Freshw Biol 37:35–43CrossRefGoogle Scholar
  28. 28.
    Gong G-C, Chen Y-LL, Liu K-K (1996) Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Cont Shelf Res 16:1561–1590CrossRefGoogle Scholar
  29. 29.
    Gong G-C, Shiah F-K, Liu K-K, Wen Y-H, Liang M-H (2000) Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrography in the southern East China Sea. Cont Shelf Res 20:411–436CrossRefGoogle Scholar
  30. 30.
    Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992CrossRefGoogle Scholar
  31. 31.
    Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726CrossRefGoogle Scholar
  32. 32.
    Simon N, Campbell L, Örnȯlfsdȯttir E, Groben R, Guillou L, Lange M, Medlin LK (2000) Oligonucleotide probes for the identification of three algal groups by dot blot and fluorescent whole-cell hybridization. J Eukaryot Microbiol 47:76–84CrossRefGoogle Scholar
  33. 33.
    Eller G, Töbe K, Medlin LK (2007) Hierarchical probes at various taxonomic levels in the Haptophyta and a new division level probe for the Heterokonta. J Plankton Res 29:629–640CrossRefGoogle Scholar
  34. 34.
    Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  35. 35.
    Sherr E, Sherr B (1993) Protistan grazing rates via uptake of fluorescently labeled prey. In: Kemp P, Sherr B, Sherr E, Cole J (eds) Current methods in aquatic microbial ecology. Lewis Publ, New York, pp 695–702Google Scholar
  36. 36.
    Sherr BF, Sherr EB, Fallon RD (1987) Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol 53:958–965Google Scholar
  37. 37.
    Sanders RW, Porter KG, Bennett SJ, DeBiase AE (1989) Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol Oceanogr 34:673–687CrossRefGoogle Scholar
  38. 38.
    Šimek K, Straškrabová V (1992) Bacterioplankton production and protozoan bacterivory in a mesotrophic reservoir. J Plankton Res 14:773–787CrossRefGoogle Scholar
  39. 39.
    Cho BC, Na SC, Choi DH (2000) Active ingestion of fluorescently labeled bacteria by mesopelagic heterotrophic nanoflagellates in the East Sea, Korea. Mar Ecol Prog Ser 206:23–32CrossRefGoogle Scholar
  40. 40.
    Princiotta SD, Sanders RW (2016) Heterotrophic and mixotrophic nanoflagellates in a mesotrophic lake: abundance and grazing impacts across season and depth. Limnol Oceanogr 62:632–644CrossRefGoogle Scholar
  41. 41.
    Seong KA, Jeong HJ, Kim S, Kim GH, Kang JH (2006) Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar Ecol Prog Ser 322:85–97CrossRefGoogle Scholar
  42. 42.
    Havskum H, Riemann B (1996) Ecological importance of bacterivorous, pigmented flagellates (mixotrophs) in the Bay of Aarhus, Denmark. Mar Ecol Prog Ser 137:251–263CrossRefGoogle Scholar
  43. 43.
    Wilken S, Huisman J, Naus-Wiezer S, Van Donk E (2012) Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett 16:225–233. CrossRefGoogle Scholar
  44. 44.
    Tsai S-F, Lin F-W, Chan Y-F, Chiang K-P (2016) Vertical distribution of pigmented and non-pigmented nanoflagellates in the East China Sea. Cont Shelf Res 125:107–113CrossRefGoogle Scholar
  45. 45.
    Liu H, Probert I, Uitz J, Claustre H, Aris-Brosou S, Frada M, Not F, de Vargas C (2009) Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proc Natl Acad Sci 106:12803–12808Google Scholar
  46. 46.
    Edvardsen B, Medlin LK (2007) 10 molecular systematics of Haptophyta. Unravelling the algae: the past, present, and future of algal systematics. 183Google Scholar
  47. 47.
    Jürgens K, Massana R, Kirchman D (2008) Protist grazing on marine bacterioplankton. Microbial ecology of the oceans2nd edn. Wiley-Liss, New York, pp 383–442CrossRefGoogle Scholar
  48. 48.
    Jezbera J, Horňák K, Šimek K (2005) Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol Ecol 52:351–363CrossRefGoogle Scholar
  49. 49.
    Massana R, Unrein F, Rodriguez-Martinez R, Forn I, Lefort T, Pinhassi J, Not F (2009) Grazing rates and functional diversity of uncultured heterotrophic flagellates. ISME J 3:588–596. CrossRefGoogle Scholar
  50. 50.
    Piwosz K, Pernthaler J (2010) Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic Sea. Environ Microbiol 12:364–377CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
  2. 2.Institute of Marine Environment and EcologyNational Taiwan Ocean UniversityKeelungTaiwan
  3. 3.Center of Excellence for the OceansNational Taiwan Ocean UniversityKeelungTaiwan

Personalised recommendations