Microbial Ecology

, Volume 77, Issue 3, pp 736–747 | Cite as

Simulated Marine Heat Wave Alters Abundance and Structure of Vibrio Populations Associated with the Pacific Oyster Resulting in a Mass Mortality Event

  • Timothy J. GreenEmail author
  • Nachshon Siboni
  • William L. King
  • Maurizio Labbate
  • Justin R. Seymour
  • David Raftos
Invertebrate Microbiology


Marine heat waves are predicted to become more frequent and intense due to anthropogenically induced climate change, which will impact global production of seafood. Links between rising seawater temperature and disease have been documented for many aquaculture species, including the Pacific oyster Crassostrea gigas. The oyster harbours a diverse microbial community that may act as a source of opportunistic pathogens during temperature stress. We rapidly raised the seawater temperature from 20 °C to 25 °C resulting in an oyster mortality rate of 77.4%. Under the same temperature conditions and with the addition of antibiotics, the mortality rate was only 4.3%, strongly indicating a role for bacteria in temperature-induced mortality. 16S rRNA amplicon sequencing revealed a change in the oyster microbiome when the temperature was increased to 25 °C, with a notable increase in the proportion of Vibrio sequences. This pattern was confirmed by qPCR, which revealed heat stress increased the abundance of Vibrio harveyi and Vibrio fortis by 324-fold and 10-fold, respectively. Our findings indicate that heat stress-induced mortality of C. gigas coincides with an increase in the abundance of putative bacterial pathogens in the oyster microbiome and highlights the negative consequences of marine heat waves on food production from aquaculture.


Crassostrea Vibrio harveyi Marine heat wave Temperature stress Disease event 



The authors acknowledge the funding provided by Macquarie University postdoctoral research scheme to TG (MQ grant #9201300681) and Australian Research Council to JS (ARC grants FT130100218 and LP160101785).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

248_2018_1242_MOESM1_ESM.docx (2.8 mb)
ESM 1 (DOCX 2872 kb)


  1. 1.
    Scannell HA, Pershing AJ, Alexander MA, Thomas AC, Mills KE (2016) Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys Res Lett 43:2069–2076CrossRefGoogle Scholar
  2. 2.
    Lima FP, Wethey DS (2012) Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat Commun 3:704CrossRefGoogle Scholar
  3. 3.
    Hobday A, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver ECJ, Benthuysen JA, Burrows MT, Donat MG et al (2016) A hierarchial approach to defining marine heatwaves. Prog Oceanogr 141:227–238CrossRefGoogle Scholar
  4. 4.
    Schaeffer A, Roughan M (2017) Subsurface intensification of marine heatwaves off southeastern Australia: the role of stratification and local winds. Geophys Res Lett 44:5025–5033CrossRefGoogle Scholar
  5. 5.
    Bond NA, Cronin MF, Freeland H, Mantua N (2014) Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys Res Lett 42:3414–3420CrossRefGoogle Scholar
  6. 6.
    Olita A, Sorgente R, Natale S, Gabersek S, Ribotti A, Bonanno A, Patti B (2007) Effects of the 2003 European heatwave on the Central Mediterranean Sea: surface fluxes and the dynamical response. Ocean Sci 3:273–289CrossRefGoogle Scholar
  7. 7.
    Pearce AF, Feng M (2013) The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J Mar Syst 111–112:139–156CrossRefGoogle Scholar
  8. 8.
    Mills KE, Pershing AJ, Brown CJ, Chen Y, Chiang F-S, Holland DS, Lehuta S, Nye JA, Sun JC, Thomas AC, Wahle RA (2013) Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26:191–195CrossRefGoogle Scholar
  9. 9.
    Di Lorenzo E, Mantua N (2016) Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat Clim Change 6:1042–1047CrossRefGoogle Scholar
  10. 10.
    Gentemann CL, Fewings MR, Garcia-Reyes M (2017) Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys Res Lett 44:312–319CrossRefGoogle Scholar
  11. 11.
    Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonne P, Cigliano M, Diaz D, Harmelin JG, Gambis MC, Kersting DK, Ledoux JB, Lejeusne C, Linares C et al (2009) Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang Biol 15:1090–1103CrossRefGoogle Scholar
  12. 12.
    Ryan JP, Kudela RM, Birch JM, Blum M, Bowers HA, Chavez FP, Doucette GJ, Hayashi K, Marin III R, Mikulski CM, Pennington JT, Scholin CA, Smith GJ, Woods A, Zhang Y (2017) Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014–2016 northeast Pacific warm anomaly. Geophys Res Lett 44:5571–5579CrossRefGoogle Scholar
  13. 13.
    Burge CA, Eakin MC, Friedman CS, Froelich B, Hershberger PK, Hofmann EE, Petes LE, Prager KC, Weil E, Willis BL, Ford SE, Harvell DC (2014) Climate change influences on marine infectious disease: implication for management and society. Annu Rev Mar Sci 6:249–277CrossRefGoogle Scholar
  14. 14.
    Go J, Deutscher AT, Spiers ZB, Dahle K, Kirkland PD, Jenkins C (2017) Mass mortalities of unknown aetiology in Pacific oysters Crassostrea gigas in Port Stephens, New South Wales, Australia. Dis Aquat Org 125:227–242CrossRefGoogle Scholar
  15. 15.
    Paul-Pont I, Evans O, Dhand NK, Rubio A, Coad P, Whittington R (2014) Descriptive epidemiology of mass mortality due to Ostreid herpesvirus-1 (OsHV-1) in commercially farmed Pacific oysters (Crassostrea gigas) in the Hawkesbury River estuary, Australia. Aquaculture 422:146–159CrossRefGoogle Scholar
  16. 16.
    Oliver ECJ, Benthuysen JA, Bindoff NL, Hobday AJ, Holbrook NJ, Mundy CN, Perkins-Kirkpatrick SE (2017) The unprecedented 2015/16 Tasman Sea marine heatwave. Nat Commun 8:16101CrossRefGoogle Scholar
  17. 17.
    de Kantzow M, Hick PM, Dhand NK, Whittington RJ (2017) Risk factors for mortality during the first occurrence of Pacific oyster mortality syndrome due to Ostreid herpesvirus - 1 in Tasmania, 2016. Aquaculture 468:328–336CrossRefGoogle Scholar
  18. 18.
    Samain JF, Degremont L, Soletchnik P, Haure J, Bedier E, Ropert M, Moal J, Huvet A, Bacca H, Van Wormhoudt A, Delaporte M, Costil K, Pouvreau S, Lambert C, Boulo V, Soudant P, Nicolas J-L, Le Roux F, Renault T, Gagnaire B, Geret F, Boutet I, Burgeot T, Boudry P (2007) Genetically based resistance to summer mortality in the Pacific oyster (Crassostrea gigas) and its relationship with physiological, immunological characteristics and infection processes. Aquaculture 268:227–243CrossRefGoogle Scholar
  19. 19.
    Chaney ML, Gracey AY (2011) Mass mortality in Pacific oysters is associated with specific gene expression signature. Mol Ecol 20:2942–2954CrossRefGoogle Scholar
  20. 20.
    Li Y, Qin JG, Abbott CA, Li X, Benkendorff K (2007) Synergistic impacts of heat shock and spawning on the physiology and immune health of Crassostrea gigas: an explanation for summer mortality in Pacific oysters. Am J Regul Integr Comp Physiol 293:R2353–R2362CrossRefGoogle Scholar
  21. 21.
    Li Y, Qin JG, Li X, Benkendorff K (2009) Spawning-dependent stress responses in Pacific oysters Crassostrea gigas: a simulated bacterial challenge in oysters. Aquaculture 293:164–171CrossRefGoogle Scholar
  22. 22.
    Wendling CC, Wegner KM (2013) Relative contribution of reproductive investment, thermal stress and Vibrio infection to summer mortality phenomena in Pacific oysters. Aquaculture 412:88–96CrossRefGoogle Scholar
  23. 23.
    Kimes NE, Grim CJ, Johnson WR, Hasan NA, Tall BD, Kothary MH, Kiss H, Munk CA, Tapia R, Green L, Detter C, Bruce DC, Brettin TS, Colwell RR, Morris PJ (2012) Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J 6:835–846CrossRefGoogle Scholar
  24. 24.
    Le Gall JL, Raillard O (1998) Influence of temperature on the physiology of the oyster Crassostrea gigas. Oceanis 14:603–608Google Scholar
  25. 25.
    Ren JS, Ross AH, Schiel DR (2000) Functional descriptions of feeding and energetics of the Pacific oyster Crassostrea gigas in New Zealand. Mar Ecol Prog Ser 208:119–130CrossRefGoogle Scholar
  26. 26.
    Ren JS, Schiel DR (2008) A dynamic energy budget model: parameterisation and application to the Pacific oyster Crassostrea gigas in New Zealand waters. J Exp Mar Biol Ecol 361:42–48CrossRefGoogle Scholar
  27. 27.
    Bougrier S, Geairon P, Deslous-Paoli JM, Bacher C, Jonquieres G (1995) Allometric relationships and effects of temperature on clearance and oxygen consumption rates of Crassostrea gigas (Thunberg). Aquaculture 134:143–154CrossRefGoogle Scholar
  28. 28.
    Le Moullac G, Queau I, Le Souchu P, Pouvreau S, Moal J, Le Coz JR, Samain JF (2007) Metabolic adjustments in the oyster Crassostrea gigas according to oxygen level and temperature. Mar Biol Res 3:357–366CrossRefGoogle Scholar
  29. 29.
    Bourles Y, Alunno-Bruscia M, Pouvreau S, Tollu G, Leguay D, Amaud C, Goulletquer P, Kooijman SALM (2009) Modelling growth and reproduction of the Pacific oyster Crassostrea gigas: advances in the oyster-DEB model through application to a coastal pond. J Sea Res 62:62–71CrossRefGoogle Scholar
  30. 30.
    Lannig G, Flores JF, Sokolova IM (2006) Temperature-dependent response in oysters, Crassostrea virginica: pollution reduces temperature tolerance in oysters. Aquat Toxicol 79:278–287CrossRefGoogle Scholar
  31. 31.
    Guo X, Ford SE (2016) Infectious diseases of marine molluscs and host responses as revealed by genomic tools. Philos Trans R Soc Lond B Biol Sci 371(1689).
  32. 32.
    Travers M-A, Boettcher Miller K, Roque A, Friedman CS (2015) Bacterial diseases in marine bivalves. J Invert Pathol 131:11–31CrossRefGoogle Scholar
  33. 33.
    Gradoville MR, Crump BC, Hase CC, White AE (2018) Environmental controls of oyster-pathogenic Vibrio spp. in Oregon estuaries and a shellfish hatchery. Appl Environ Microbiol.
  34. 34.
    Siboni N, Balaraju V, Carney R, Labbate M, Seymour JR (2016) Spatiotemporal dynamics of Vibrio spp. within the Sydney harbour estuary. Front Microbiol 7:460CrossRefGoogle Scholar
  35. 35.
    Vezzulli L, Brettar I, Pezzati E, Reid PC, Colwell RR, Hofle MG, Pruzzo C (2012) Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME J 6:21–30CrossRefGoogle Scholar
  36. 36.
    Oh MH, Lee SM, Lee DH, Choi SH (2009) Regulation of the Vibrio vulnificus hupA gene by temperature alteration and cyclic AMP receptor protein and evaluation of its role in virulence. Infect Immun 77:1208–1215CrossRefGoogle Scholar
  37. 37.
    Garren M, Son K, Tout J, Seymour JR, Stocker R (2016) Temperature-induced behavioral switches in a bacterial coral pathogen. ISME J 10:1363–1372CrossRefGoogle Scholar
  38. 38.
    Elston RA, Hasegawa H, Humphrey KL, Polyak IK, Hase CC (2008) Re-emergence of Vibrio tubiashii in bivalve shellfish aquaculture: severity, environmental drivers, geographic extent and management. Dis Aquat Org 82:119–134CrossRefGoogle Scholar
  39. 39.
    Richards GP, Watson MA, Needleman DS, Church KM, Hase CC (2015) Mortalities of Eastern and Pacific oyster larvae caused by the pathogens Vibrio coralliilyticus and Vibrio tubiashii. Appl Environ Microbiol 81(1):292–297CrossRefGoogle Scholar
  40. 40.
    de Kantzow M, Hick P, Becker JA, Whittington RJ (2016) Effect of water temperature on mortality of Pacific oysters Crassostrea gigas associated with microvariant ostreid herpesvirus 1 (OsHV-1). Aquacult Environ Interact 8:419–428CrossRefGoogle Scholar
  41. 41.
    Lokmer A, Wegner KM (2014) Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. ISME J.
  42. 42.
    Canesi L, Gallo G, Gavioli M, Pruzzo C (2002) Bacteria-hemocyte interactions and phagocytosis in marine bivalves. Microsc Res Tech 57(6):469–476CrossRefGoogle Scholar
  43. 43.
    Anom (2017) Special Climate Statement 61 - exceptional heat in southeast Australia in early 2017. 11th of April 2017 edn. Bureau of MeteorologyGoogle Scholar
  44. 44.
    Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89(6):670–679CrossRefGoogle Scholar
  45. 45.
    Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF (2004) Diversity and dynamics of a North Atlantic coastal Vibrio community. Appl Environ Microbiol 70(7):4103–4110CrossRefGoogle Scholar
  46. 46.
    Pepin JF, Riou A, Renault T (2008) Rapid and sensitive detection of ostreid herpesvirus 1 in oyster samples by real-time PCR. J Virol Methods 149:269–276CrossRefGoogle Scholar
  47. 47.
    Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. CrossRefGoogle Scholar
  48. 48.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541CrossRefGoogle Scholar
  49. 49.
    Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584CrossRefGoogle Scholar
  50. 50.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336CrossRefGoogle Scholar
  51. 51.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, p 115–175Google Scholar
  52. 52.
    Le Roux F, Gay M, Lambert C, Nicolas J-L, Gouy M, Berthe F (2004) Phylogenetic study and identification of Vibrio splendidus-related strains based on gyrB gene sequences. Dis Aquat Org 58:143–150CrossRefGoogle Scholar
  53. 53.
    Pascual J, Carmen Macian M, Arahal DR, Garay E, Pujalte MJ (2010) Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int J Syst Evol Microbiol 60:154–165CrossRefGoogle Scholar
  54. 54.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  55. 55.
    Green TJ, Montagnani C, Benkendorff K, Robinson N, Speck P (2014) Ontogeny and water temperature influences the antiviral response of the Pacific oyster, Crassostrea gigas. Fish Shellfish Immunol 36:151–157. CrossRefGoogle Scholar
  56. 56.
    de Lorgeril J, Zenagui R, Rosa R, Piquemal D, Bachere E (2011) Whole transcriptome profiling of successful immune response to Vibrio infections in the oyster Crassostrea gigas by digital gene expression analysis. Plos One 6(8):e23142. CrossRefGoogle Scholar
  57. 57.
    Subasinghe R, Soto D, Jia J (2009) Global aquaculture and its role in sustainable development. Rev Aquac 1(1):2–9CrossRefGoogle Scholar
  58. 58.
    Lang PR, Langdon CJ, Taris NG, Camara MD (2010) Use of laboratory assays to predict subsequent growth and survival of Pacific oyster (Crassostrea gigas) families planted in coastal waters. Aquaculture 306:68–79CrossRefGoogle Scholar
  59. 59.
    Saulnier D, De Decker S, Haffner P, Cobret L, Robert M, Garcia C (2010) A large-scale epidemiological study to identify bacteria pathogenic to Pacific oyster Crassostrea gigas and correlation between virulence and metalloprotease-like activity. Microb Ecol 59(4):787–798CrossRefGoogle Scholar
  60. 60.
    Garnier M, Labreuche Y, Garcia C, Robert M, Nicolas J-L (2007) Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microb Ecol 53:187–196CrossRefGoogle Scholar
  61. 61.
    Gay M, Renault T, Pons A-M, Le Roux F (2004) Two Vibrio splendidus related strains collaborate to kill Crassostrea gigas: taxonomy and host alterations. Dis Aquat Org 62:65–74CrossRefGoogle Scholar
  62. 62.
    Wendling CC, Batista FM, Wegner KM (2014) Persistence, seasonal dynamics and pathogenic potential of Vibrio communities from Pacific oyster hemolymph. Plos One 9(4):e94256CrossRefGoogle Scholar
  63. 63.
    Trabal Fernandez N, Mazon-Suastegui JM, Vazquez-Juarez R, Ascencio-Valle F, Romero J (2014) Changes in the composition and diversity of the bacterial microbiota associated with oysters (Crassostrea corteziensis, Crassostrea gigas and Crassostrea skiamea) during commercial production. FEMS Microbiol Ecol 88:69–83CrossRefGoogle Scholar
  64. 64.
    Gilbert JA, Steele JA, Caporaso JG, Steinbruck L, Reeder J, Temperton B, Huse S, McHardy AC, Knight R, Joint I, Somerfield P, Fuhrmann JA, Field D (2012) Defining seasonal marine microbial community dynamics. ISME J 6:298–308CrossRefGoogle Scholar
  65. 65.
    Pierce ML, Ward EJ, Holohan BA, Zhao X, Hicks RE (2015) The influence of site and season on the gut and pallial fluid communities of the eastern oyster, Crassostrea virginica (Bivalvia, Ostridae): community-level physiological profiling and genetic structure. Hydrobiologia.
  66. 66.
    Delaporte M, Soudant P, Lambert C, Moal J, Pouvreau S, Samain J-F (2006) Impact of food availability on energy storage and defense related hemocyte parameters of the pacific oyster Crassostrea gigas during an experimental cycle. Aquaculture 254:571–582CrossRefGoogle Scholar
  67. 67.
    Knowles G, Handlinger J, Jones B, Moltschaniwskyj N (2014) Hemolymph chemistry and histopathological changes in Pacific oysters (Crassostrea gigas) in response to low salinity stress. J Invert Pathol 121:78–84CrossRefGoogle Scholar
  68. 68.
    Nell JA (2002) Farming triploid oysters. Aquaculture 210:69–88CrossRefGoogle Scholar
  69. 69.
    Le Roux F, Wegner KM, Polz MF (2016) Oysters and vibrios as a model for disease dynamics in wild animals. Trends Microbiol 24(7):568–580. CrossRefGoogle Scholar
  70. 70.
    Collado L, Cleenwerck I, Van Trappen S, De Vos P, Figueras MJ (2009) Arcobacter mytili sp. no., an indoxyl acetate-hydrolysis-negative bacterium isolated from mussels. Int J Syst Evol Microbiol 59:1391–1396CrossRefGoogle Scholar
  71. 71.
    Madigan TL, Bott NJ, Torok VA, Percy NJ, Carragher JF, de Barros Lopes MA, Kiermeier A (2014) A microbial spoilage profile of half shell Pacific oysters (Crassostrea gigas) and Sydney rock oysters (Saccostrea glomerata). Food Microbiol 38:219–227CrossRefGoogle Scholar
  72. 72.
    Collado L, Figueras MJ (2011) Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin Microbiol Rev. 24(1):174–192CrossRefGoogle Scholar
  73. 73.
    Rosa RD, de Lorgeril J, Tailliez P, Bruno R, Piquemal D, Bachere E (2012) A hemocyte gene expression signature correlated with predictive capacity of oysters to survive Vibrio infections. BMC Genomics 13:252–263CrossRefGoogle Scholar
  74. 74.
    Green TJ, Vergnes A, Montagnani C, de Lorgeril J (2016) Distinct immune responses of juvenile and adult oysters (Crassostrea gigas) to viral and bacterial infections. Vet Res 47:72CrossRefGoogle Scholar
  75. 75.
    Rosa RD, Alonso P, Santini A, Verges A, Bachere E (2015) High polymorphism in big defensin gene expression reveals presence-absence gene variability (PAV) in the oyster Crassostrea gigas. Dev Comp Immunol 49:231–238CrossRefGoogle Scholar
  76. 76.
    Travers M-A, Basuyaux O, Le Goic N, Huchette S, Nicolas J-L, Koken M, Paillard C (2009) Influence of temperature and spawning effort on Haliotis tuberculata mortalities caused by Vibrio harveyi: an example of emerging vibriosis linked to global warming. Glob Chang Biol 15:1365–1376CrossRefGoogle Scholar
  77. 77.
    Travers M-A, Meistertzheim A-L, Cardinaud M, Friedman CS, Huchette S, Moraga D, Paillard C (2010) Gene expression patterns of abalone, Haliotis tuberculata, during successive infections by the pathogen Vibrio harveyi. J Invert Pathol 105:289–297CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesMacquarie UniversitySydneyAustralia
  2. 2.Centre for Shellfish ResearchVancouver Island UniversityNanaimoCanada
  3. 3.Climate Change Cluster (C3) Ocean Microbes GroupUniversity of Technology SydneySydneyAustralia
  4. 4.The School of Life SciencesUniversity of Technology SydneySydneyAustralia

Personalised recommendations