Skip to main content

Advertisement

Log in

Absence of the Nitrous Oxide Reductase Gene Cluster in Commercial Alfalfa Inoculants Is Probably Due to the Extensive Loss of Genes During Rhizobial Domestication

  • Note
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

As other legume crops, alfalfa cultivation increases the emission of the greenhouse gas nitrous oxide (N2O). Since legume-symbiotic nitrogen-fixing bacteria play a crucial role in this emission, it is important to understand the possible impacts of rhizobial domestication on the evolution of denitrification genes. In comparison with the genomes of non-commercial strains, those of commercial alfalfa inoculants exhibit low total genome size, low number of ORFs and high numbers of both frameshifted genes and pseudogenes, suggesting a dramatic loss of genes during bacterial domestication. Genomic analysis focused on denitrification genes revealed that commercial strains have perfectly conserved the nitrate (NAP), nitrite (NIR) and nitric (NOR) reductase clusters related to the production of N2O from nitrate but completely lost the nitrous oxide (NOS) reductase cluster (nosRZDFYLX genes) associated with the reduction of N2O to gas nitrogen. Based on these results, we propose future screenings for alfalfa-nodulating isolates containing both nitrogen fixation and N2O reductase genes for environmental sustainability of alfalfa production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Matheyarasu R, Seshadri B, Bolan NS, Naidu R (2016) Assessment of nitrogen losses through nitrous oxide from abattoir wastewater-irrigated soils. Environ Sci Pollut Res Int 23(22):22633–22646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Burger M, Horwath WR (2012) Assessment of baseline nitrous oxide emissions in California cropping systems. https://www.cdfa.ca.gov/is/docs/12-0453-SABurger.pdf

  3. Akiyama H, Hoshino YT, Itakura M, Shimomura Y, Wang Y, Yamamoto A, Tago K, Nakajima Y, Minamisawa K, Hayatsu M (2016) Mitigation of soil N2O emission by inoculation with a mixed culture of indigenous Bradyrhizobium diazoefficiens. Sci Rep 6:32869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM (2018) Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol 26(1):43–55

  5. Jozefkowicz C, Brambilla S, Frare R, Stritzler M, Puente M, Piccinetti C, Soto G, Ayub N (2017) Microevolution rather than large genome divergence determines the effectiveness of legume-rhizobia symbiotic interaction under field conditions. J Mol Evol 85(3–4):79–83

    Article  PubMed  CAS  Google Scholar 

  6. Jozefkowicz C, Brambilla S, Frare R, Stritzler M, Piccinetti C, Puente M, Berini CA, Perez PR, Soto G, Ayub N (2017) Stable symbiotic nitrogen fixation under water-deficit field conditions by a stress-tolerant alfalfa microsymbiont and its complete genome sequence. J Biotechnol. 263:52–54

    Article  PubMed  CAS  Google Scholar 

  7. diCenzo GC, Finan TM (2015) Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome. Mol Gen Genomics. 290(4):1345–1356

    Article  CAS  Google Scholar 

  8. diCenzo GC, Zamani M, Milunovic B, Finan TM (2016) Genomic resources for identification of the minimal N2-fixing symbiotic genome. Environ. Microbiol. 18(8):2534–2547

    Article  PubMed  CAS  Google Scholar 

  9. Torres MJ, Rubia MI, de la Pena TC, Pueyo JJ, Bedmar EJ, Delgado MJ (2014) Genetic basis for denitrification in Ensifer meliloti. BMC Microbiol. 14:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bueno E, Mania D, Frostegard A, Bedmar EJ, Bakken LR, Delgado MJ (2015) Anoxic growth of Ensifer meliloti 1021 by N2O-reduction, a potential mitigation strategy. Front Microbiol. 6:537

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  12. Itakura M, Uchida Y, Akiyama H, Hoshino YT, Shimomura Y, Morimoto S, Tago K, Wang Y, Hayakawa C, Uetake Y et al (2013) Mitigation of nitrous oxide emissions from soils by Bradyrhizobium japonicum inoculation. Nat Clim Chang. 3:208–212

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás Ayub.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brambilla, S., Frare, R., Soto, G. et al. Absence of the Nitrous Oxide Reductase Gene Cluster in Commercial Alfalfa Inoculants Is Probably Due to the Extensive Loss of Genes During Rhizobial Domestication. Microb Ecol 76, 299–302 (2018). https://doi.org/10.1007/s00248-018-1145-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1145-9

Keywords

Navigation