Azospirillum brasilense Increases CO2 Fixation on Microalgae Scenedesmus obliquus, Chlorella vulgaris, and Chlamydomonas reinhardtii Cultured on High CO2 Concentrations

  • Francisco J. Choix
  • Cecilia Guadalupe López-Cisneros
  • Hugo Oscar Méndez-Acosta
Plant Microbe Interactions
  • 99 Downloads

Abstract

Mutualism interactions of microalgae with other microorganisms are widely used in several biotechnological processes since symbiotic interaction improves biotechnological capabilities of the microorganisms involved. The interaction of the bacterium Azospirillum brasilense was assessed with three microalgae genus, Scenedesmus, Chlorella, and Chlamydomonas, during CO2 fixation under high CO2 concentrations. The results in this study have demonstrated that A. brasilense maintained a mutualistic interaction with the three microalgae assessed, supported by the metabolic exchange of indole-3-acetic acid (IAA) and tryptophan (Trp), respectively. Besides, CO2 fixation increased, as well as growth and cell compound accumulation, mainly carbohydrates, in each microalgae evaluated, interacting with the bacterium. Overall, these results propose the mutualism interaction of A. brasilense with microalgae for improving biotechnological processes based on microalgae as CO2 capture and their bio-refinery capacity.

Keywords

Indole-3-acetic acid Mutualistic interaction Phytohormones Plant growth-promoting bacterium Tryptophan 

Notes

Acknowledgments

The authors are thankful to the Gaseous Biofuels Cluster-CEMIE-BIO for their support under the project SENER-CONACyT 247006. Francisco J. Choix acknowledges CONACyT for the support under the Program-Project 2517 Cátedras CONACYT and Diana Fischer for editorial services in English.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

248_2017_1139_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 17 kb)

References

  1. 1.
    Cheah WY, Show PL, Chang J-S, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour. Technol. 184:190–201.  https://doi.org/10.1016/j.biortech.2014.11.026CrossRefPubMedGoogle Scholar
  2. 2.
    Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew. Sust. Energ. Rev. 27:622–653.  https://doi.org/10.1016/j.rser.2013.05.063CrossRefGoogle Scholar
  3. 3.
    Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew. Sust. Energ. Rev. 31:121–132.  https://doi.org/10.1016/j.rser.2013.11.054CrossRefGoogle Scholar
  4. 4.
    Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26:483–489.  https://doi.org/10.1016/j.tibtech.2008.05.004CrossRefPubMedGoogle Scholar
  5. 5.
    Higgins BT, Gennity I, Samra S, Kind T, Fiehn O, VanderGheynst JS (2016) Cofactor symbiosis for enhanced algal growth, biofuel production, and wastewater treatment. Algal Res. 17:308–315.  https://doi.org/10.1016/j.algal.2016.05.024CrossRefGoogle Scholar
  6. 6.
    Hom EFY, Aiyar P, Schaeme D, Mittag M, Sasso S (2015) A chemical perspective on microalgal-microbial interactions. Trends Plant Sci. 20:689–693.  https://doi.org/10.1016/j.tplants.2015.09.004CrossRefPubMedGoogle Scholar
  7. 7.
    Kouzuma A, Watanabe K (2015) Exploring the potential of algae/bacteria interactions. Curr. Opin. Biotechnol. 33:125–129.  https://doi.org/10.1016/j.copbio.2015.02.007CrossRefPubMedGoogle Scholar
  8. 8.
    Cooper MB, Smith AG (2015) Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr. Opin. Plant Biol. 26:147–153.  https://doi.org/10.1016/j.pbi.2015.07.003CrossRefPubMedGoogle Scholar
  9. 9.
    Santos CA, Reis A (2014) Microalgal symbiosis in biotechnology. Appl. Microbiol. Biotechnol. 98:5839–5846.  https://doi.org/10.1007/s00253-014-5764-xCrossRefPubMedGoogle Scholar
  10. 10.
    Cho D-H, Ramanan R, Heo J, Lee J, Kim B-H, H-M O, Kim H-S (2015) Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour. Technol. 175:578–585.  https://doi.org/10.1016/j.biortech.2014.10.159CrossRefPubMedGoogle Scholar
  11. 11.
    Do Nascimento M, Dublan MA, Ortiz-Marquez JCF, Curatti L (2013) High lipid productivity of an Ankistrodesmus-Rhizobium artificial consortium. Bioresour. Technol. 146:400–407.  https://doi.org/10.1016/j.biortech.2013.07.085CrossRefPubMedGoogle Scholar
  12. 12.
    Kim BH, Ramanan R, Cho D-H, H-M O, Kim H-S (2014) Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy 69:95–105.  https://doi.org/10.1016/j.biombioe.2014.07.015CrossRefGoogle Scholar
  13. 13.
    Le Chevanton M, Garnier M, Bougaran G, Schreiber N, Lukomska E, Bérard J-B, Fouilland E, Bernard O, Cadoret J-P (2013) Screening and selection of growth-promoting bacteria for Dunaliella cultures. Algal Res. 2:212–222.  https://doi.org/10.1016/j.algal.2013.05.003CrossRefGoogle Scholar
  14. 14.
    Choix FJ, Bashan Y, Mendoza A, De-Bashan LE (2014) Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris. J. Biotechnol. 177:22–34.  https://doi.org/10.1016/j.jbiotec.2014.02.014CrossRefPubMedGoogle Scholar
  15. 15.
    Choix FJ, de-Bashan LE, Bashan Y (2012a) Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Autotrophic conditions. Enzym. Microb. Technol. 51:294–299.  https://doi.org/10.1016/j.enzmictec.2012.07.012CrossRefGoogle Scholar
  16. 16.
    Choix FJ, de-Bashan LE, Bashan Y (2012b) Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions. Enzym. Microb. Technol. 51:300–309.  https://doi.org/10.1016/j.enzmictec.2012.07.012CrossRefGoogle Scholar
  17. 17.
    de- Bashan LE, Antoun H, Bashan Y (2008a) Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J. Phycol. 44:938–947.  https://doi.org/10.1111/j.1529-8817.2008.00533.xCrossRefPubMedGoogle Scholar
  18. 18.
    de-Bashan LE, Bashan Y, Moreno M, Lebsky VK, Bustillos JJ (2002) Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can. J. Microbiol. 48:514–521.  https://doi.org/10.1139/W02-051CrossRefPubMedGoogle Scholar
  19. 19.
    de-Bashan LE, Hernandez JP, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res. 38:466–474.  https://doi.org/10.1016/j.watres.2003.09.022CrossRefPubMedGoogle Scholar
  20. 20.
    de- Bashan LE, Magallon P, Antoun H, Bashan Y (2008b) Role of glutamate dehydrogenase and glutamine synthetase in Chlorella vulgaris during assimilation of ammonium when jointly immobilized with the microalgae-growth-promoting bacterium Azospirillum brasilense. J. Phycol. 44:1188–1196.  https://doi.org/10.1111/j.1529-8817.2008.00572.xCrossRefPubMedGoogle Scholar
  21. 21.
    de -Bashan LE, Mayali X, Bebout BM, Weber PK, Detweiler AM, Hernandez J-P, Prufert-Bebout L, Bashan Y (2016) Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (fluorescent in situ hybridization). Algal Res. 15:179–186.  https://doi.org/10.1016/j.algal.2016.02.019CrossRefGoogle Scholar
  22. 22.
    Palacios OA, Gomez-Anduro G, Bashan Y, de -Bashan LE (2016b) Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol. Ecol. 92:1–11.  https://doi.org/10.1093/femsec/fiw077CrossRefGoogle Scholar
  23. 23.
    Bashan Y, de -Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv. Agron. 108:77–136.  https://doi.org/10.1016/S0065-2113(10)08002-8CrossRefGoogle Scholar
  24. 24.
    Palacios OA, Choix FJ, Bashan Y, de -Bashan LE (2016a) Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana-Azospirillum brasilense system under heterotrophic conditions. Res. Microbiol. 167:367–379.  https://doi.org/10.1016/j.resmic.2016.02.005CrossRefPubMedGoogle Scholar
  25. 25.
    Ruiz-Güereca DA, Sánchez-Saavedra MP (2016) Growth and phosphorus removal by Synechococcus elongatus co-immobilized in alginate beads with Azospirillum brasilense. J. Appl. Phycol. 28:1501–1507.  https://doi.org/10.1007/s10811-015-0728-9CrossRefGoogle Scholar
  26. 26.
    Ho SH, Chen CY, Lee DJ, Chang JS (2011) Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol. Adv. 29:189–198.  https://doi.org/10.1016/j.biotechadv.2010.11.001CrossRefPubMedGoogle Scholar
  27. 27.
    Choix FJ, Polster E, Corona-González RI, Snell-Castor R, Méndez-Acosta HO (2017) Nutrient composition of culture media induces different patterns of CO2 fixation from biogas and biomass production by the microalga Scenedesmus obliquus U169. Bioprocess Biosyst. Eng. 40:1733–1742.  https://doi.org/10.1007/s00449-017-1828-5CrossRefPubMedGoogle Scholar
  28. 28.
    Tang D, Han W, Li P, Miao X, Zhong J (2011) Bioresource technology CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour. Technol. 102:3071–3076.  https://doi.org/10.1016/j.biortech.2010.10.047CrossRefPubMedGoogle Scholar
  29. 29.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol. Adv. 25:294–306.  https://doi.org/10.1016/j.biotechadv.2007.02.001CrossRefPubMedGoogle Scholar
  30. 30.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350–356CrossRefGoogle Scholar
  31. 31.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275PubMedGoogle Scholar
  32. 32.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Cell Phys 37:911–917Google Scholar
  33. 33.
    Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of Phytohormone production by model plant-growth-promoting Rhizobacteria (PGPR) belonging to the genus Azospirillum. J. Plant Growth Regul. 33:440–459.  https://doi.org/10.1007/s00344-013-9362-4CrossRefGoogle Scholar
  34. 34.
    Pereg L, de -Bashan LE, Bashan Y (2016) Assessment of affinity and specificity of Azospirillum for plants. Plant Soil 399:389–414.  https://doi.org/10.1007/s11104-015-2778-9CrossRefGoogle Scholar
  35. 35.
    Palombella AL, Dutcher SK (1998) Identification of the gene encoding the tryptophan synthase beta-subunit from Chlamydomonas reinhardtii. Plant Physiol. 117:455–464.  https://doi.org/10.1104/pp.117.2.455CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bashan Y, Holguin G, de -Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can. J. Microbiol. 50:521–577.  https://doi.org/10.1139/w04-035CrossRefPubMedGoogle Scholar
  37. 37.
    Bashan Y, Bustillos JJ, Leyva LA, Hernandez J-P, Bacilio M (2006) Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biol. Fertil. Soils 42:279–285.  https://doi.org/10.1007/s00374-005-0025-xCrossRefGoogle Scholar
  38. 38.
    Omar MNA, Osman MEH, Kasim WA, Abd El-Daim IA (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense. In: Ashraf M et al (eds) Salinity and water stress. Springer, Netherlands, pp 111–116Google Scholar
  39. 39.
    Rozier C, Erban E, Hamzaoui J, Prignet-Combartet C, Comte G, Kopka J, Czarnes S, Legendre L (2016) Xylem sap metabolite profile changes during photostimulation of maize by the plant growth-promoting Rhyzobacterium, Azospirillum lipoferum. Metabolomics (Los Angel) 182.  https://doi.org/10.4172/2153-0769.1000182
  40. 40.
    Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G (2013) Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour. Technol. 139:149–154.  https://doi.org/10.1016/j.biortech.2013.04.032CrossRefPubMedGoogle Scholar
  41. 41.
    Broek VA, Gysegom P, Ona O, Hendrickx N, Prinsen E, Impe JV, Vanderleyden J (2005) Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and Identification of a cis-acting sequence involved in auxin responsive expression. Mol. Plant-Microbe Interact. 18:311–323.  https://doi.org/10.1094/MPMI-18-0311CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Francisco J. Choix
    • 1
    • 2
  • Cecilia Guadalupe López-Cisneros
    • 1
  • Hugo Oscar Méndez-Acosta
    • 1
  1. 1.Departamento de Ingeniería QuímicaCUCEI-Universidad de GuadalajaraGuadalajaraMexico
  2. 2.CONACYT - CUCEI-Universidad de GuadalajaraGuadalajaraMexico

Personalised recommendations