Advertisement

Microbial Ecology

, Volume 76, Issue 2, pp 362–371 | Cite as

Naproxen Is Transformed Via Acetogenesis and Syntrophic Acetate Oxidation by a Methanogenic Wastewater Consortium

  • Sarah J. Wolfson
  • Abigail W. Porter
  • Julia K. Campbell
  • Lily Y. Young
Environmental Microbiology

Abstract

Over-the-counter pharmaceutical compounds can serve as microbial substrates in wastewater treatment processes as well as in the environment. The metabolic pathways and intermediates produced during their degradation, however, are poorly understood. In this study, we investigate an anaerobic wastewater community that metabolizes naproxen via demethylation. Enriched cultures, established from anaerobic digester inocula receiving naproxen as the sole carbon source, transformed naproxen to 6-O-desmethylnaproxen (DMN) within 22 days. Continual enrichment and culture transfer resulted in consistent demethylation of naproxen with no loss of DMN observed. Methane was generated at 0.83 mmol per 1 mmol transformed naproxen. In addition to naproxen, the consortium readily demethylated syringic acid and vanillic acid. DNA analysis revealed a community of acetogenic bacteria and syntrophic acetate oxidizing archaea. Combined with the biotransformation data, this suggests the enriched consortium performs aromatic O-demethylation through a syntrophic relationship between specific acetogens, acetate oxidizers, and methanogens. The proposed model of carbon transfer through the anaerobic food web highlights the significance of linked community interactions in the anaerobic transformation of aromatic O-methyl compounds such as naproxen.

Keywords

Naproxen Anaerobic Microbial transformation Demethylation Wastewater Pharmaceutical 

Notes

Acknowledgements

The authors gratefully acknowledge Tom Villani and the labs of Dr. James Simon and Dr. Alan Goldman for the analysis support. The nucleotide sequence data reported are available in the NCBI Sequence Read Archive under the BioSample accession numbers SAMN07237492 and SAMN07237493.

Funding Information

This project was supported by the USDA National Institute of Food and Agriculture Hatch Multistate project 1007899 through the New Jersey Agricultural Experiment Station, Hatch Multistate NJ07212. Sarah Wolfson was supported by a US National Science Foundation Fuels IGERT from Rutgers University (NSF DGE 0903675).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

248_2017_1136_MOESM1_ESM.docx (356 kb)
ESM 1 (DOCX 355kb)

References

  1. 1.
    Brozinski J-M, Lahti M, Meierjohann A et al (2013) The anti-inflammatory drugs diclofenac, naproxen and ibuprofen are found in the bile of wild fish caught downstream of a wastewater treatment plant. Environ Sci Technol 47:342–348.  https://doi.org/10.1021/es303013j CrossRefPubMedGoogle Scholar
  2. 2.
    Gross B, Montgomery-Brown J, Naumann A, Reinhard M (2004) Occurrence and fate of pharmaceuticals and alkylphenol ethoxylate metabolites in an effluent-dominated river and wetland. Environ Toxicol Chem 23:2074–2083CrossRefPubMedGoogle Scholar
  3. 3.
    Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37:1061–1068.  https://doi.org/10.1021/es025834r CrossRefPubMedGoogle Scholar
  4. 4.
    Goldstein M, Shenker M, Chefetz B (2014) Insights into the uptake processes of wastewater-borne pharmaceuticals by vegetables. Environ Sci Technol 48:5593–5600.  https://doi.org/10.1021/es5008615 CrossRefPubMedGoogle Scholar
  5. 5.
    Carballa M, Fink G, Omil F et al (2008) Determination of the solid–water distribution coefficient (K d) for pharmaceuticals, estrogens and musk fragrances in digested sludge. Water Res 42:287–295.  https://doi.org/10.1016/j.watres.2007.07.012 CrossRefPubMedGoogle Scholar
  6. 6.
    Maoz A, Chefetz B (2010) Sorption of the pharmaceuticals carbamazepine and naproxen to dissolved organic matter: role of structural fractions. Water Res 44:981–989.  https://doi.org/10.1016/j.watres.2009.10.019 CrossRefPubMedGoogle Scholar
  7. 7.
    Quintana J, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res 39:2654–2664.  https://doi.org/10.1016/j.watres.2005.04.068 CrossRefPubMedGoogle Scholar
  8. 8.
    Lahti M, Oikari A (2011) Microbial transformation of pharmaceuticals naproxen, bisoprolol, and diclofenac in aerobic and anaerobic environments. Arch Environ Contam Toxicol 61:202–210.  https://doi.org/10.1007/s00244-010-9622-2 CrossRefPubMedGoogle Scholar
  9. 9.
    Daniel SL, Keith ES, Yang H et al (1991) Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: expression and specificity of the co-dependent O-demethylating activity. Biochem Biophys Res Commun 180:416–422.  https://doi.org/10.1016/S0006-291X(05)81309-9 CrossRefPubMedGoogle Scholar
  10. 10.
    Phelps CD, Young LY (1997) Microbial metabolism of the plant phenolic compounds ferulic and syringic acids under three anaerobic conditions. Microb Ecol 33:206–215CrossRefPubMedGoogle Scholar
  11. 11.
    Owen W, Stuckey D, Healy Jr J et al (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485–492.  https://doi.org/10.1016/0043-1354(79)90043-5 CrossRefGoogle Scholar
  12. 12.
    Andersen JV, Hansen SH (1992) Simultaneous determination of (R)- and (S)-naproxen and (R)- and (S)-6-O-desmethylnaproxen by high-performance liquid chromatography on a Chiral-AGP column. J Chromatogr 577:362–365CrossRefPubMedGoogle Scholar
  13. 13.
    Healy JB, Young LY (1979) Anaerobic biodegradation of eleven aromatic compounds to methane. Appl Environ Microbiol 38:84–89PubMedPubMedCentralGoogle Scholar
  14. 14.
    Zinder SH, Anguish T, Cardwell SC (1984) Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor. Appl Environ Microbiol 47:1343–1345PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kaiser J-P, Hanselmann KW (1982) Fermentative metabolism of substituted monoaromatic compounds by a bacterial community from anaerobic sediments. Arch Microbiol 133:185–194.  https://doi.org/10.1007/BF00414999 CrossRefGoogle Scholar
  16. 16.
    Parks GS, Huffman HM (1932) The free energies of some organic compounds. Chemical Catalog Company, IncorporatedGoogle Scholar
  17. 17.
    Laviska DA, Guan C, Emge TJ et al (2014) Addition of C–C and C–H bonds by pincer-iridium complexes: a combined experimental and computational study. Dalton Trans 43:16354–16365.  https://doi.org/10.1039/C4DT02043J CrossRefPubMedGoogle Scholar
  18. 18.
    Leach ST, Lui K, Naing Z et al (2015) Multiple opportunistic pathogens, but not pre-existing inflammation, may be associated with necrotizing enterocolitis. Dig Dis Sci 60:3728–3734.  https://doi.org/10.1007/s10620-015-3830-6 CrossRefPubMedGoogle Scholar
  19. 19.
    Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072.  https://doi.org/10.1128/AEM.03006-05 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267.  https://doi.org/10.1128/AEM.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  23. 23.
    O’Connor OA, Rivera MD, Young LY (1989) Toxicity and biodegradation of phthalic acid esters under methanogenic conditions. Environ Toxicol Chem 8:569–576CrossRefGoogle Scholar
  24. 24.
    Bache R, Pfennig N (1981) Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130:255–261.  https://doi.org/10.1007/BF00459530 CrossRefGoogle Scholar
  25. 25.
    Frazer AC, Young LY (1985) A gram-negative anaerobic bacterium that utilizes O-methyl substituents of aromatic acids. Appl Environ Microbiol 49:1345–1347PubMedPubMedCentralGoogle Scholar
  26. 26.
    Frazer AC (1994) O-demethylation and other transformations of aromatic compounds by acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Springer US, pp 445–483Google Scholar
  27. 27.
    Berman MH, Frazer AC (1992) Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers. Appl Environ Microbiol 58:925–931PubMedPubMedCentralGoogle Scholar
  28. 28.
    Balk M, Mehboob F, van Gelder AH et al (2010) (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage. Appl Microbiol Biotechnol 88:595–603.  https://doi.org/10.1007/s00253-010-2788-8 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Muller V, Frerichs J (2013) Acetogenic bacteria. In eLS. John Wiley & Sons, Ltd: Chichester.  https://doi.org/10.1002/9780470015902.a0020086.pub2
  30. 30.
    Garcia J-L, Ollivier B, Whitman WB (2006) The order methanomicrobiales. In: Dr MDP, Falkow S, Rosenberg E et al (eds) The prokaryotes. Springer, New York, pp 208–230CrossRefGoogle Scholar
  31. 31.
    Oren A (2014) The family methanobacteriaceae. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 165–193Google Scholar
  32. 32.
    Bitton G (2005) Wastewater microbiology. John Wiley & Sons, HobokenCrossRefGoogle Scholar
  33. 33.
    Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138:263–272.  https://doi.org/10.1007/BF00402133 CrossRefGoogle Scholar
  34. 34.
    Barker HA (1936) On the biochemistry of the methane fermentation. Arch Für Mikrobiol 7:404–419.  https://doi.org/10.1007/BF00407413 CrossRefGoogle Scholar
  35. 35.
    Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141.  https://doi.org/10.1128/AEM.00489-06 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Westerholm M, Roos S, Schnürer A (2010) Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol Lett.  https://doi.org/10.1111/j.1574-6968.2010.02023.x

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sarah J. Wolfson
    • 1
    • 2
  • Abigail W. Porter
    • 1
  • Julia K. Campbell
    • 1
    • 3
  • Lily Y. Young
    • 1
  1. 1.Department of Environmental SciencesRutgers UniversityNew BrunswickUSA
  2. 2.Department of Systems and Computational BiologyAlbert Einstein College of MedicineBronxUSA
  3. 3.Township of Middletown Sewerage AuthorityBelfordUSA

Personalised recommendations