Skip to main content
Log in

Season-Long Experimental Drought Alters Fungal Community Composition but Not Diversity in a Grassland Soil

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Using terrestrial model ecosystems (TMEs), we investigated how reduced moisture conditions impact soil fungal communities from a temperate grassland over the course of an entire season. Starting at about 65% of the soil’s maximum water holding capacity (WHCmax), TME soils were adjusted to three moisture levels for 15 weeks: 70% WHCmax, approximating starting conditions, 50% WHCmax, and 30% WHCmax, representing reduced moisture conditions. Diversity and abundances of soil fungi at the start and at the end of the experiment were characterized using Illumina meta-barcoding. Community diversity at the end of the experiment did not differ between experimental moisture levels and was comparable to diversity measures from the field. However, fungal communities did change compositionally in both abundances and presence/absence of species. Analyzing class-level and individual contributions of fungi to these changes revealed that only a minor portion reacted significantly, indicating that most compositional change was likely driven by many consistent small-scale shifts in presence/absences or abundances. Together, our results show that prolonged reduction in soil moisture conditions will trigger compositional changes in soil fungal communities but not necessarily change overall diversity. We highlight the cumulative contribution of minor but consistent changes among community members, as opposed to significant responses of individual species. We also detected a strong general experimental effect on soil fungi that are moved from the field to experimental TMEs, suggesting the importance of acclimatization effects in these communities under laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thorn G (1997) The fungi in soil. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker Inc, New York, pp 63–127

    Google Scholar 

  2. Deacon LJ, Pryce-Miller EJ, Frankland JC, Bainbridge BW, Moore PD, Robinson CH (2006) Diversity and function of decomposer fungi from a grassland soil. Soil Biol Biochem 38:7–20

    Article  CAS  Google Scholar 

  3. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  CAS  PubMed  Google Scholar 

  4. Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  5. Porras-Alfaro A, Herrera J, Natvig DO, Lipinski K, Sinsabaugh RL (2011) Diversity and distribution of soil fungal communities in a semiarid grassland. Mycologia 103:10–21

    Article  PubMed  Google Scholar 

  6. Chen H, Mothapo NV, Shi W (2015) Soil moisture and pH control relative contributions of fungi and bacteria to N2O production. Microb Ecol 69:180–191

    Article  CAS  PubMed  Google Scholar 

  7. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  8. DeBellis T, Kernaghan G, Bradley R, Widden P (2006) Relationships between stand composition and ectomycorrhizal community structure in boreal mixed-wood forests. Microb Ecol 52:114–126

    Article  CAS  PubMed  Google Scholar 

  9. Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  10. Loreau M (2010) Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos Trans R Soc Biol Sci 365:49–60

    Article  Google Scholar 

  11. Loreau M, de Mazancourt C (2013) Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 16:106–115

    Article  PubMed  Google Scholar 

  12. Awasthi A, Singh M, Soni SK, Singh R, Kalra A (2014) Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. ISME J 8:2445–2452

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bardgett RD, Manning P, Morrien E, De Vries FT (2013) Hierarchical responses of plant-soil interactions to climate change: consequences for the global carbon cycle. J Ecol 101:334–343

    Article  Google Scholar 

  14. De Vries FT, Shade A (2013) Controls on soil microbial community stability under climate change. Front Microbiol 4:1–16

    Article  Google Scholar 

  15. Jansson JK, Prosser JI (2013) The life beneath our feet. Nature 494:40–41

    Article  CAS  PubMed  Google Scholar 

  16. Griffin DM (1963) Soil moisture and the ecology of soil fungi. Biol Rev 38:141–166

    Article  CAS  PubMed  Google Scholar 

  17. Drenovsky RE, Vo D, Graham KJ, Scow KM (2004) Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb Ecol 48:424–430

    Article  CAS  PubMed  Google Scholar 

  18. Bell CW, McIntyre NE, Cox S, Tissue DT, Zak JC (2008) Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan desert grassland. Microb Ecol 56:153–167

    Article  PubMed  Google Scholar 

  19. Bell CW, Acosta-Martinez V, McIntyre NE, Cox S, Tissue DT, Zak JC (2009) Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland. Microb Ecol 58:827–842

    Article  CAS  PubMed  Google Scholar 

  20. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161

    Article  CAS  Google Scholar 

  21. Toberman H, Freeman C, Evans C, Fenner N, Artz RRE (2008) Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil. FEMS Microbiol Ecol 66:426–436

    Article  CAS  PubMed  Google Scholar 

  22. Hawkes CV, Kivlin SN, Rocca JD, Huguet V, Thomsen MA, Suttle KB (2011) Fungal community responses to precipitation. Glob Chang Biol 17:1637–1645

    Article  Google Scholar 

  23. Cregger MA, Schadt CW, McDowell NG, Pockman WT, Classen AT (2012) Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Appl Environ Microbiol 78:8587–8594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Manzoni S, Schimel JP, Porporato A (2012) Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93:930–938

    Article  PubMed  Google Scholar 

  25. Zeglin LH, Bottomley PJ, Jumpponen A, Rice CW, Arango M, Lindsley A, McGowan A, Mfombep P, Myrold DD (2013) Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales. Ecology 94:2334–2345

    Article  CAS  PubMed  Google Scholar 

  26. Bapiri A, Bååth E, Rousk J (2010) Drying-rewetting cycles affect fungal and bacterial growth differently in an arable soil. Microb Ecol 60:419–428

    Article  PubMed  Google Scholar 

  27. Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jumpponen A, Jones KL (2014) Tallgrass prairie soil fungal communities are resilient to climate change. Fungal Ecol 10:44–57

    Article  Google Scholar 

  29. Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin G, Pockman WT, Shaw R, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941–952

    Article  Google Scholar 

  30. Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–641

    Article  PubMed  Google Scholar 

  31. Evans SE, Wallenstein MD (2012) Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 109:101–116

    Article  Google Scholar 

  32. Cruz-Martinez K, Suttle KB, Brodie EL, Power ME, Andersen GL, Banfield JF (2009) Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J 3:738–744

    Article  CAS  PubMed  Google Scholar 

  33. Herrera J, Poudel R, Nebel KA, Collins SL (2011) Precipitation increases the abundance of some groups of root-associated fungal endophytes in a semiarid grassland. Ecosphere 2:1–14

    Article  Google Scholar 

  34. Yuste JC, Penuelas J, Estiarte M, Garcia-Mas J, Mattana S, Ogaya R, Pujol M, Sardans J (2011) Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob Chang Biol 17:1475–1486

    Article  Google Scholar 

  35. Lee H, Fitzgerald J, Hewins DB, McCulley RL, Archer SR, Rahn T, Throop HL (2014) Soil moisture and soil-litter mixing effects on surface litter decomposition: a controlled environment assessment. Soil Biol Biochem 72:123–132

    Article  CAS  Google Scholar 

  36. Lawton JH (1995) Ecological experiments with model systems. Science 269:328–331

    Article  CAS  PubMed  Google Scholar 

  37. Sheppard SC (1997) Toxicity testing using microcosms. In: Tarradellas J, Bitton G, Rossel D (eds). Lewis Publishers, Soil Ecotoxicology, pp 345–372

    Google Scholar 

  38. Morgan E, Knacker T (1994) The role of laboratory terrestrial model ecosystems in the testing of potentially harmful substances. Ecotoxicology 233:213–233

    Article  Google Scholar 

  39. Knacker T, van Gestel CAM, Jones SE, Soares AMVM, Schallnass H-J, Förster B, Edwards CA (2004) Testing and field-validation of a terrestrial model ecosystem (TME) – an instrument for testing potentially harmful substances: conceptual approach and study design. Ecotoxicology 13:9–27

    Article  CAS  PubMed  Google Scholar 

  40. A'Bear DA, Jones TH, Kandeler E, Boddy L (2014) Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol Biochem 70:151–158

    Article  Google Scholar 

  41. Bandow C, Ng EL, Schmelz RM, Sousa JP, Römbke J (2016) A TME study with the fungicide pyrimethanil combined with different moisture regimes: effects on enchytraeids. Ecotoxicology 25:213–224

    Article  CAS  PubMed  Google Scholar 

  42. Geisen S, Bandow C, Römbke J, Bonkowski M (2014) Soil water availability strongly alters the community composition of soil protists. Pedobiologia 57:205–213

    Article  Google Scholar 

  43. Xia C, Zhang X, Christensen MJ, Nan Z, Li C (2015) Epicloë endophyte affects the ability of powdery mildew (Blumaria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecol 16:26–33

    Article  Google Scholar 

  44. Canarini A, Dijkstra FA (2015) Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling. Soil Biol Biochem 81:195–203

    Article  CAS  Google Scholar 

  45. Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7:e40863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kozarewa I, Turner DJ (2011) 96-plex molecular barcoding for the Illumina genome analyzer. In: Kwon YM, Ricke SC (eds) High-throughput next generation sequencing: methods in molecular biology, vol 733. Springer, pp 279–298

  47. Schmidt P-A, Bálint M, Greshake B, Bandow C, Römbke J, Schmitt I (2013) Illumina metabarcoding of a soil fungal community. Soil Biol Biochem 65:128–132

    Article  CAS  Google Scholar 

  48. Bálint M, Schmidt P-A, Sharma R, Thines M, Schmitt I (2014) An Illumina metabarcoding pipeline for fungi. Ecol Evol 4:2642–2653

    Article  PubMed  PubMed Central  Google Scholar 

  49. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinformatics 13:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nilsson RH, Veldre V, Hartmann M, Unterseher M, Amend A, Bergsten J, Kirstiansson E, Ryberg M, Jumpponen A, Abarenkov K (2010) An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol 3:284–287

    Article  Google Scholar 

  51. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  52. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Duenas M, Grebenc T, Griffith GW, Hartman H, Kirk PM, Kohout P, Larsson E, Lindahl BD, Luecking R, Martin MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Poldmaa K, Saag R, Saar I, Schuessler A, Scott JA, Senes C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277

    Article  PubMed  Google Scholar 

  53. Huson DH, Suparna M, Ruscheweyh H-J, Weber N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565

    Article  CAS  PubMed  Google Scholar 

  55. Bálint M, Bartha L, O’Hara RB, Olson MS, Otte J, Pfenninger M, Robertson AL, Tiffin P, Schmitt I (2015) Relocation, high-latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Mol Ecol 24:235–248

    Article  PubMed  Google Scholar 

  56. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432

    Article  Google Scholar 

  57. Wang Y, Naumann U, Wright ST, Warton DI (2012) Mvabund – an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol 3:471–474

    Article  Google Scholar 

  58. Legendre P, Legendre L (2012) Numerical ecology, vol 24, 3rd edn. Elsevier Science

  59. Harrison XA (2014) Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2:e616

    Article  PubMed  PubMed Central  Google Scholar 

  60. Harrison XA (2015) A comparison of observation-level random effect and beta-binomial models for modelling overdispersion in binomial data in ecology & evolution. PeerJ 3:e1114

    Article  PubMed  PubMed Central  Google Scholar 

  61. Benjamini Y, Hochberg Y (1995) Controlling for false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300

    Google Scholar 

  62. Development Core Team R (2015) R: a language and environment for statistical computing. R Foundatoin for Statistical Computing, Vienna

    Google Scholar 

  63. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) vegan: Community ecology package, Version 2.3–5. https://CRAN.R-project.org/package=vegan

  64. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effect models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  65. Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  PubMed  Google Scholar 

  66. Descamps-Julien B, Gonzalez A (2005) Stable coexistence in a fluctuating environment: an experimental demonstration. Ecology 86:2815–2824

    Article  Google Scholar 

  67. Dornelas M, Gotelli NJ, Mcgill B, Shimadzu H, Moyes F, Sievers C, Magurran AE (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296–299

    Article  CAS  PubMed  Google Scholar 

  68. Magurran AE, Dornelas M, Moyes F, Gotelli NJ, McGill B (2015) Rpaid biotic homogenization of marine fish assemblages. Nat Commun 6:1–5

    Article  Google Scholar 

  69. Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  CAS  PubMed  Google Scholar 

  70. Allison SD, Treseder KK (2008) Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Chang Biol 14:2898–2909

    Article  Google Scholar 

  71. Waldrop MP, Firestone MK (2006) Response of microbial community composition and function to soil climate change. Microb Ecol 52:716–724

    Article  CAS  PubMed  Google Scholar 

  72. Fierer N, Schimel JP (2002) Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787

    Article  CAS  Google Scholar 

  73. Prescott CE (2005) Decomposition and mineralization of nutrients from litter and humus. In: Bassirirad H (ed) Nutrient acquisition by plants. An ecological perspective. Ecological Studies 181. Springer, Verlag Berlin Heidelberg, pp 15–41

  74. Balser TC, Gutknecht JLM, Liang C (2010) How will climate change impact soil microbial communities? In: Dixon GR, Tilston EL (eds) Soil microbiology and sustainable crop production. Springer, pp 373–397

Download references

Acknowledgements

This study was financially supported by the research funding program “LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-Ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts (Senckenberg Biodiversity and Climate Research Centre BiK-F). We thank Dr. Bob O’Hara for valuable discussion of methods and results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miklós Bálint or Gregor Rolshausen.

Electronic supplementary material

Supplementary Figure S1

Soil moisture of terrestrial soil ecosystems (TMEs, see photo) exposed to three different water regimes over a period of 15 weeks. Curves depict the respective moisture content for TMEs given in % of WHCmax. The horizontal dashed line reflects the moisture content at beginning of the experiment under field conditions (e.g. 65% of WHCmax). (PDF 11 kb)

Supplementary Table S1

Taxonomic and functional assignments of strongly responding OTUs, and references to their putative nutritional modes. (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, PA., Schmitt, I., Otte, J. et al. Season-Long Experimental Drought Alters Fungal Community Composition but Not Diversity in a Grassland Soil. Microb Ecol 75, 468–478 (2018). https://doi.org/10.1007/s00248-017-1047-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1047-2

Keywords

Navigation