Skip to main content
Log in

Bacterial Community Composition and Physiological Shifts Associated with the El Niño Southern Oscillation (ENSO) in the Patos Lagoon Estuary

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The Patos Lagoon estuary is a microtidal system that is strongly regulated by atmospheric forces, including remote large-scale phenomena such as the El Niño Southern Oscillation (ENSO), which affects precipitation patterns in the region. In this study, we investigated whether the bacterial community composition (BCC), community-level physiological profiles (CLPP), and a set of environmental variables were affected by the transition from a moderate El Niño to a strong La Niña event (June 2010 to May 2011). We identified two distinct periods: a period following El Niño that was characterized by low salinity and high concentrations of NO3 and PO4 −3 and low molecular weight (LMW) substances and a period following La Niña during which salinity, temperature, and transparency increased and the concentrations of nutrients and LMW substances decreased. The BCC and CLPP were significantly altered in response to this transition. This is the first study addressing the effect of ENSO on bacteria at the community level in an estuarine system. Our results suggest that there is a link between ENSO and bacteria, indicating the role of climate variability in bacterial activities and, hence, the cycling of organic matter by these microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wells JT (1995) Tide-dominated estuaries and tidal rivers. In: Perillo GME (ed) Developments in sedimentology—geomorphology and sedimentology of estuaries, vol 53. Elsevier Sci, New York, pp 179–205

    Chapter  Google Scholar 

  2. Perillo GME (1995) Definitions and geomorphological classification of estuaries. In: Perillo GME (ed) Developments in sedimentology—geomorphology and sedimentology of estuaries, vol 53. Elsevier Sci, New York, pp 17–47

    Chapter  Google Scholar 

  3. Luettich RA Jr, Carr SD, Reynolds-Fleming JV, Fulcher CW, McNinch JE (2002) Semi-diurnal seiching in a shallow, micro-tidal lagoonal estuary. Cont Shelf Res Cont Shelf Res 22:1669–1681

    Article  Google Scholar 

  4. Soares I, Möller O Jr (2001) Low-frequency currents and water mass spatial distribution on the southern Brazilian shelf. Cont Shelf Res 21:1785–1814

    Article  Google Scholar 

  5. Hartmann C, Schettini CAF (1991) Aspectos hidrológicos na desembocadura da Laguna dos Patos, RS. Rev Bras Geocienc 2:371–377

    Google Scholar 

  6. Marques WC, Fernandes EH, Monteiro IO, Möller OO (2009) Numerical modelling of the Patos Lagoon coastal plume, Brazil. Cont Shelf Res 29:556–571

    Article  Google Scholar 

  7. Möller OO Jr, Castaing P, Salomon J-C, Lazure P (2001) The influence of local and non-local forcing effects on the subtidal circulation of Patos Lagoon. Estuaries 24:297–311

    Article  Google Scholar 

  8. Grimm AM, Ferraz SET, Gomes J (1998) Precipitation anomalies in southern Brazil associated with El Niño and La Niña events. J Clim 11:2863–2880

    Article  Google Scholar 

  9. Garcia AM, Vieira JP, Winemiller KO, Grimm AM (2004) Comparison of 1982–1983 and 1997–1998 El Niño effects on the shallow-water fish assemblage of the Patos Lagoon estuary (Brazil). Estuaries 27:905–914

    Article  Google Scholar 

  10. Abreu PC, Bergesch M, Proença LA, Garcia CAE, Odebrecht C (2010) Short- and long-term chlorophyll a variability in the shallow microtidal Patos Lagoon estuary, southern Brazil. Estuar Coast 33:554–569

    Article  CAS  Google Scholar 

  11. Garcia AM, Vieira JP, Winemiller KO (2001) Dynamics of the shallow-water fish assemblage of the Patos Lagoon estuary (Brazil) during cold and warm ENSO episodes. J Fish Biol 59:1218–1238

    Article  Google Scholar 

  12. Capítoli RR, Colling LA, Bemvenuti CE (2008) Cenários de distribuição do mexilhão dourado Limnoperna fortunei (Mollusca—Bivalvia) sob distintas condições de salinidade no complexo lagunar Patos-Mirim, RS - Brasil. Atlantica 30:35–44

    Google Scholar 

  13. Odebrecht C, Abreu PC, Bemvenuti CE, Copertino M, Muelbert JH, Vieira JP, Seeliger U (2010) The Patos Lagoon estuary. biotic responses to natural and anthropogenic impacts in the last decades (1979–2008). In: Kennish MJ, Paerl HW (eds) Coastal Lagoons: critical habitats of environmental change. CRC Press, Boca Raton, pp 437–459

    Google Scholar 

  14. Colling LA, Bemvenuti CE, Gandra MS (2007) Seasonal variability on the structure of sublittoral macrozoobenthic association in the Patos Lagoon estuary, southern Brazil. Iheringia 97:257–262

    Article  Google Scholar 

  15. Castello JP, Möller OO Jr (1978) On the relationship between rainfall and shrimp production in the estuary of the Patos Lagoon (Rio Grande do Sul, Brazil). Atlantica 3:67–74

    Google Scholar 

  16. Möller O Jr, Vaz C, Castello JP (2009) The effect of river discharge and winds on the interannual variability of the pink shrimp Farfantepenaeus paulensis production in Patos Lagoon. Estuar Coast 32:787–796

    Article  Google Scholar 

  17. Abreu PC, Biddanda BB, Odebrecht C (1992) Bacterial dynamics of the Patos Lagoon estuary, southern Brazil (32°S, 52°W): relationship with phytoplankton production and suspended material. Estuar Coast Shelf S 35:621–635

    Article  Google Scholar 

  18. Anesio AM, Abreu PC, Biddanda C (2003) The role of free and attached microorganisms in the decomposition of estuarine macrophyte detritus. Estuar Coast Shelf S 56:197–201

    Article  Google Scholar 

  19. Lozupone C, Knight R (2007) Global patterns in bacterial diversity. P Natl Acad Sci USA 104:11436–11440

    Article  CAS  Google Scholar 

  20. They NH, Ferreira LMH, Marins LF, Abreu PC (2013) Stability of bacterial composition and activity in different salinity waters in the dynamic Patos Lagoon estuary: evidence from a Lagrangian-like approach. Microb Ecol 66:551–562

    Article  PubMed  Google Scholar 

  21. Odebrecht C, Abreu PC, Möller OO, Niencheski LF, Proença LA, Torgan LC (2005) Drought effects on pelagic properties in the shallow and turbid Patos Lagoon, Brazil. Estuaries 28:675–685

    Article  Google Scholar 

  22. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnol Oceanogr 39:1985–1992

    Article  CAS  Google Scholar 

  23. Strome DJ, Miller MC (1978) Photolytic changes in dissolved organic humic substances. Verh Internat Verein Limnol 20:1248–1954

    Google Scholar 

  24. Lindell MJ, Granéli W, Tranvik LJ (1995) Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol Oceanogr 40:95–199

    Google Scholar 

  25. Stepanauskas R, Laudon H, Jørgensen NOG (2000) High DON bioavailability in boreal streams during a spring flood. Limnol Oceanogr 45:1298–1307

    Article  CAS  Google Scholar 

  26. Carlson DJ, Brann ML, Mague TH, Mayer LM (1985) Molecular weight distribution of dissolved organic materials in seawater determined by ultrafiltration: a re-examination. Mar Chem 16:155–171

    Article  CAS  Google Scholar 

  27. Amon RMW, Benner R (1996) Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41:41–51

    Article  CAS  Google Scholar 

  28. UNESCO (1983) Chemical methods for use in marine environmental monitoring (manual and guides 12). Intergovernmental Oceanographic Commission, Paris

    Google Scholar 

  29. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis, Bulletin 167, 2nd edn. Fisheries Research Board of Canada, Ottawa. Bulletin 167. 311 pp

  30. Siripong S, Rittmann BE (2007) Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Wat Res 41:1110–1120

    Article  CAS  Google Scholar 

  31. Henriques IS, Alves A, Tacão M, Almeida A, Cunha A, Correia A (2006) Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuar Coast Shelf S 68:139–148

    Article  Google Scholar 

  32. Lehours A-C, Cottrell MT, Dahan O, Kirchman DL, Jeanthon C (2010) Summer distribution and diversity of aerobic anoxygenic phototrophic bacteria in the Mediterranean Sea in relation to environmental variables. FEMS Microbiol Ecol 74:397–409

    Article  CAS  PubMed  Google Scholar 

  33. Lazar I (2010) Gel Analyzer Software. <http://www.gelanalyzer.com>

  34. Tourlomousis P, Kemsley EK, Ridgway KP, Toscano MJ, Humphrey TJ, Narbad A (2010) PCR-Denaturing gradient gel electrophoresis of complex microbial communities: a two-step approach to address the effect of gel- to-gel variation and allow valid comparisons across a large data set. Microb Ecol 59:776–786

    Article  CAS  PubMed  Google Scholar 

  35. Ishii S, Kadota K, Senoo K (2009) Application of a clustering-based peak alignment algorithm to analyze various DNA fingerprinting data. J Microbiol Meth 78:344–350

    Article  CAS  Google Scholar 

  36. R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. <http://www.R-project.org>

  37. Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microb 57:2351–2359

    CAS  Google Scholar 

  38. Hammer Ø, Harper DAT, Ryan PD (2001) PAlaentological STatistics software package for education and data analysis. Palaeontol Electron 4(1):1–9

    Google Scholar 

  39. Simpson GL (2012) Permute: functions for generating restricted permutations of data. R package version 0.7-0. < http://CRAN.R-project.org/package=permute>

  40. Hackett CA, Griffiths BS (1997) Statistical analysis of the time-course of Biolog substrate utilization. J Microbiol Meth 30:63–69

    Article  CAS  Google Scholar 

  41. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  42. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York, 306 pp

    Book  Google Scholar 

  43. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: Community Ecology Package. R package version 2.0-0. http://CRAN.R-project.org/package=vegan

  44. Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi. ISBN 92-9059-179-X (R package)

  45. Chigbu P, Gordon S, Tchounwou PB (2005) The seasonality of fecal coliform bacteria pollution and its influence on closures of shellfish harvesting areas in Mississippi sound. Int J Environ Res Public Health 2:362–373

    Article  PubMed Central  PubMed  Google Scholar 

  46. Lipp EK, Kurz R, Vincent R, Rodriguez-Palacios C, Farrah SR, Rose JB (2001) The effects of seasonal variability and weather on microbial fecal pollution and enteric pathogens in a subtropical estuary. Estuaries 24:266–276

    Article  CAS  Google Scholar 

  47. Gutiérrez D, Enríquez E, Purca S, Quipúzcoa L, Marquina R, Flores G, Graco M (2008) Oxygenation episodes on the continental shelf of central Peru: remote forcing and benthic ecosystem response. Progr Oceanogr 79:177–189

    Article  Google Scholar 

  48. Kirchman DL, Rich JH, Barber RT (1995) Biomass and biomass production of heterotrophic bacteria along 140°W in the equatorial Pacific: effect of temperature on the microbial loop. Deep-Sea Res 42:603–619

    Google Scholar 

  49. Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726

    PubMed Central  PubMed  Google Scholar 

  50. Bouvier TC, del Giorgio PA (2002) Compositional changes in free-living bacterial communities along the salinity gradient in two temperate estuaries. Limnol Oceanogr 47:453–470

    Article  CAS  Google Scholar 

  51. Crump BC, Hopkinson CS, Sogin ML, Hobbie JE (2004) Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Appl Environ Microbiol 70:1494–1505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Yokokawa T, Nagata T, Cottrell MT, Kirchman DL (2004) Growth rate of the major phylogenetic bacterial groups in the Delaware estuary. Limnol Oceanogr 49:1620–1629

    Article  Google Scholar 

  53. Cottrell MT, Kirchman DL (2004) Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquat Microb Ecol 34:139–149

    Article  Google Scholar 

  54. Kirchman D, Dittel AN, Malmstrom RR, Cottrell MT (2005) Biogeography of major bacterial groups in the Delaware estuary. Limnol Oceanogr 50:1697–1706

    Article  CAS  Google Scholar 

  55. Campbell BJ, Kirchman DL (2012) Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J 7:210–220

    Article  PubMed Central  PubMed  Google Scholar 

  56. Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289

    Article  CAS  PubMed  Google Scholar 

  57. Kirchman DL (1994) The uptake of inorganic nutrients by heterotrophic bacteria. Microb Ecol 28:255–271

    Article  CAS  PubMed  Google Scholar 

  58. Schäffer H, Bernard L, Courties C, Lebaron P, Servais P, Pukall R, Stackebrandt E et al (2001) Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in the genetic diversity of bacterial populations. FEMS Microbiol Ecol 34:243–253

    Article  Google Scholar 

  59. Leflaive J, Danger M, Lacroix G, Lyautey E, Oumarou C, Ten-Hage L (2008) Nutrient effects on the genetic and functional diversity of aquatic bacterial communities. FEMS Microbiol Ecol 66:379–390

    Article  CAS  PubMed  Google Scholar 

  60. Thottathil SD, Balachandran KK, Jayalakshmy KV, Gupta GVM, Nair S (2008) Tidal switch on metabolic activity: salinity induced responses on bacterioplankton metabolic capabilities in a tropical estuary. Estuar Coast Shelf S 78:665–673

    Article  Google Scholar 

  61. Comte J, del Giorgio PA (2009) Links between resources, C metabolism and the major components of bacterioplankton community structure across a range of freshwater ecosystems. Environ Microbiol 11:1704–1716

    Article  CAS  PubMed  Google Scholar 

  62. Schultz GE, Ducklow H (2000) Changes in bacterioplankton metabolic capabilities along a salinity gradient in the New York river estuary, Virginia, USA. Aquat Microb Ecol 22:163–174

    Article  Google Scholar 

  63. del Giorgio PA, Bouvier TC (2002) Linking the physiologic and phylogenetic successions in free-living bacterial communities along an estuarine salinity gradient. Limnol Oceanogr 47:471–486

    Article  Google Scholar 

  64. Troussellier MH, Schäfer N, Batailler L, Bernard C, Courties P, Lebaron G, Muyzer G, Servais P, Vives-Rego J (2002) Bacterial activity and genetic richness along an estuarine gradient (Rhone river plume, France). Aquat Microb Ecol 28:13–24

    Article  Google Scholar 

  65. Konopka A, Oliver L, Turco RF Jr (1998) The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb Ecol 35:103–115

    Article  CAS  PubMed  Google Scholar 

  66. Smalla K, Wachtendorf U, Heuer H, Liu W-T, Forney L (1998) Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Appl Environ Microbiol 64:1220–1225

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Comte J, del Giorgio PA (2010) Linking the patterns of change in composition and function in bacterioplankton successions along environmental gradients. Ecology 91:1466–1476

    Article  PubMed  Google Scholar 

  68. Windom HL, Niencheski LF, Smith RG Jr (1999) Biogeochemistry of nutrients and trace metals in the estuarine region of the Patos Lagoon (Brazil). Estuar Coast Shelf S 48:113–123

    Article  CAS  Google Scholar 

  69. Kjerfve B (1986) Comparative oceanography of coastal lagoons. In: Wolfe DA (ed) Estuarine variability. Academic, New York, pp 63–81

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian Long-Term Ecological Research (BR-LTER, Patos Lagoon) (PELD, Lagoa dos Patos) team for support during sampling and for kindly providing the salinity data. We are also grateful to Dr. Clarisse Odebrecht and Dr. José Henrique Muelbert from the Institute of Oceanography and Pedro Eduardo Almeida da Silva from the College of Medicine of the Federal University of Rio Grande and two anonymous reviewers for the valuable comments and suggestions made on the original manuscript. This study was supported by the Brazilian agencies, CNPq and CAPES. L. Marins and P.C. Abreu are Research Fellows of the National Council for the Scientific and Technological Development of the Brazilian Ministry of Science, Technology and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ng Haig They.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

They, N.H., Ferreira, L.M.H., Marins, L.F. et al. Bacterial Community Composition and Physiological Shifts Associated with the El Niño Southern Oscillation (ENSO) in the Patos Lagoon Estuary. Microb Ecol 69, 525–534 (2015). https://doi.org/10.1007/s00248-014-0511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0511-5

Keywords

Navigation