Skip to main content
Log in

High-Level Resistance to Cobalt and Nickel but Probably No Transenvelope Efflux: Metal Resistance in the Cuban Serratia marcescens Strain C-1

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Molecular mechanisms underlying inducible cobalt and nickel resistance of a bacterial strain isolated from a Cuban serpentine deposit were investigated. This strain C-1 was assigned to Serratia marcescens by 16S rDNA analysis and DNA/DNA hybridization. Genes involved in metal resistance were identified by transposon mutagenesis followed by selection for cobalt- and nickel-sensitive derivatives. The transposon insertion causing the highest decrease in metal resistance was located in the ncrABC determinant. The predicted NcrA product was a NreB ortholog of the major facilitator protein superfamily and central for cobalt/nickel resistance in S. marcescens strain C-1. NcrA also mediated metal resistance in Escherichia coli and caused decreased accumulation of Co(II) and Ni(II) in this heterologous host. NcrB may be a regulatory protein. NcrC was a protein of the nickel–cobalt transport (NiCoT) protein family and necessary for full metal resistance in E. coli, but only when NcrA was also present. Without NcrA, NcrC caused a slight decrease in metal resistance and mediated increased accumulation of Ni(II) and Co(II). Because the cytoplasmic metal concentration can be assumed to be the result of a flow equilibrium of uptake and efflux processes, this interplay between metal uptake system NcrC and metal efflux system NcrA may contribute to nickel and cobalt resistance in this bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Abín, L, Coto, O, Gomez, Y, Bosecker, K (2002) Isolation and characterization of indigenous microbiota from lateritic nickel ore of Moa mine. Rev Biol 16: 66–68

    Google Scholar 

  2. Akanuma, G, Nanamiya, H, Natori, Y, Nomura, N, Kawamura, F (2006) Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis. J Bacteriol 188: 2715–2720

    Article  PubMed  CAS  Google Scholar 

  3. Altschul, SF, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25: 3389–3402

    Article  PubMed  CAS  Google Scholar 

  4. Amoroso, MJ, Schubert, D, Mitscherlich, P, Schumann, P, Kothe, E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. J Basic Microbiol 40: 295–301

    Article  PubMed  CAS  Google Scholar 

  5. Auling, G, Probst, A, Kroppenstedt, RM (1986) Chemo- and molecular taxonomy of d(−1)-tartrate utilizing pseudomonads. Syst Appl Microbiol 8: 114–120

    CAS  Google Scholar 

  6. Blanc-Potard, AB, Lafay, B (2003) MgtC as a horizontally-acquired virulence factor of intracellular bacterial pathogens: evidence from molecular phylogeny and comparative genomics. J Mol Evol 57: 479–486

    Article  PubMed  CAS  Google Scholar 

  7. Bregeon, D, Colot, V, Radman, M, Taddei, F (2001) Translational misreading: a tRNA modification counteracts a + 2 ribosomal frameshift. Genes Dev 15: 2295–2306

    Article  PubMed  CAS  Google Scholar 

  8. Chamnongpol, S, Groisman, EA (2002) Mg2+ homeostasis and avoidance of metal toxicity. Mol Microbiol 44: 561–571

    Article  PubMed  CAS  Google Scholar 

  9. De Ley, J, Cattoir, H, Reynaerts, A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142

    Article  PubMed  Google Scholar 

  10. Eitinger, T, Suhr, J, Moore, L, Smith, JAC (2005) Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 18: 399–405

    Article  PubMed  CAS  Google Scholar 

  11. Franke, S, Grass, G, Rensing, C, Nies, DH (2003) Molecular analysis of the copper-transporting CusCFBA efflux system from Escherichia coli. J Bacteriol 185: 3804–3812

    Article  PubMed  CAS  Google Scholar 

  12. Froschauer, EM, Kolisek, M, Dieterich, F, Schweigel, M, Schweyen, RJ (2004) Fluorescence measurements of free [Mg2+] by use of mag-fura 2 in Salmonella enterica. FEMS Microbiol Lett 237: 49–55

    PubMed  CAS  Google Scholar 

  13. Goris, J, et al. (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51: 1773–1782

    PubMed  CAS  Google Scholar 

  14. Grass, G, Fan, B, Rosen, BP, Lemke, K, Schlegel, HG, Rensing, C (2001) NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183: 2803–2807

    Article  PubMed  CAS  Google Scholar 

  15. Grass G, Rensing C (2001) Genes involved in copper homeostasis in Escherichia coli. J Bacteriol 183: 2145–2147

    Article  PubMed  CAS  Google Scholar 

  16. Große, C, et al. (1999) Transcriptional organization of the czc heavy metal homoeostasis determinant from Alcaligenes eutrophus. J Bacteriol 181: 2385–2393

    PubMed  Google Scholar 

  17. Hmiel, SP, Snavely, MD, Florer, JB, Maguire, ME, Miller, CG (1989) Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci. J Bacteriol 171: 4742–4751

    PubMed  CAS  Google Scholar 

  18. Housecroft, CE, Constable, EC (2006) Chemistry, 3rd edn. Pearson Education Limited, Essex, England

    Google Scholar 

  19. Lavigne, JP, O’callaghan, D, Blanc-Potard, AB (2005) Requirement of MgtC for Brucella suis intramacrophage growth: a potential mechanism shared by Salmonella enterica and Mycobacterium tuberculosis for adaptation to a low-Mg2+ environment. Infect Immun 73: 3160–3163

    Article  PubMed  CAS  Google Scholar 

  20. Legatzki, A, Anton, A, Grass, G, Rensing, C, Nies, DH (2003a) Interplay of the Czc-system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 185: 4354–4361

    Article  PubMed  CAS  Google Scholar 

  21. Legatzki, A, et al. (2003b) First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans. Biodegradation 14: 153–168

    Article  PubMed  CAS  Google Scholar 

  22. Lohmeyer, M, Friedrich, CG (1987) Nickel transport in Alcaligenes eutrophus. Arch Microbiol 149: 130–135

    Article  CAS  Google Scholar 

  23. Mergeay, M, Nies, D, Schlegel, HG, Gerits, J, Charles, P, van Gijsegem, F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162: 328–334

    PubMed  CAS  Google Scholar 

  24. Moncrief, MB, Maguire, ME (1998) Magnesium and the role of MgtC in growth of Salmonella typhimurium. Infect Immun 66: 3802–3809

    PubMed  CAS  Google Scholar 

  25. Moncrief, MB, Maguire, ME (1999) Magnesium transport in prokaryotes. J Biol Inorg Chem 4: 523–527

    Article  PubMed  CAS  Google Scholar 

  26. Munkelt, D, Grass, G, Nies, DH (2004) The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J Bacteriol 186: 8036–8043

    Article  PubMed  CAS  Google Scholar 

  27. Nakayashiki, T, Inokuchi, H (1998) Novel temperature-sensitive mutants of Escherichia coli that are unable to grow in the absence of wild-type tRNA(6)(Leu). J Bacteriol 180: 2931–2935

    PubMed  CAS  Google Scholar 

  28. Nies, D, Mergeay, M, Friedrich, B, Schlegel, HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169: 4865–4868

    PubMed  CAS  Google Scholar 

  29. Nies, DH (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation–proton-antiporter in Escherichia coli. J Bacteriol 177: 2707–2712

    PubMed  CAS  Google Scholar 

  30. Nies, DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27: 313–339

    Article  PubMed  CAS  Google Scholar 

  31. Nies, DH (2004) Essential and toxic effects of elements on micro-organisms. In: Anke, K, Ihnat, M, Stoeppler, M (Eds.) Metals and Their Compounds in the Environment, Part II.1. Wiley-VCH, Weinheim

    Google Scholar 

  32. Nies, DH, Nies, A, Chu, L, Silver, S (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86: 7351–7355

    Article  PubMed  CAS  Google Scholar 

  33. Nies, DH, Rehbein, G, Hoffmann, T, Baumann, C, Grosse, C (2006) Paralog of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 11: 82–93

    Article  PubMed  CAS  Google Scholar 

  34. Nies, DH, Silver, S (1989) Metal ion uptake by a plasmid-free metal-sensitive Alcaligenes eutrophus strain. J Bacteriol 171: 4073–4075

    PubMed  CAS  Google Scholar 

  35. Panina, EM, Mironov, AA, Gelfand, MS (2003) Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci USA 100: 9912–9917

    Article  PubMed  CAS  Google Scholar 

  36. Park, JE, Schlegel, HG, Rhie, HG, Lee, HS (2004) Nucleotide sequence and expression of the ncr nickel and cobalt resistance in Hafnia alvei 5–5. Int Microbiol 7: 27–34

    PubMed  CAS  Google Scholar 

  37. Park, JE, Young, KE, Schlegel, HG, Rhie, HG, Lee, HS (2003) Conjugative plasmid mediated inducible nickel resistance in Hafnia alvei 5–5. Int Microbiol 6: 57–64

    PubMed  CAS  Google Scholar 

  38. Paulsen, IT, Park, JH, Choi, PS, Saier, MHJ (1997) A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol Lett 156: 1–8

    Article  PubMed  CAS  Google Scholar 

  39. Pfeiffer, J, Guhl, J, Waidner, B, Kist, M, Bereswill, S (2002) Magnesium uptake by CorA is essential for viability of the gastric pathogen Helicobacter pylori. Infect Immun 70: 3930–3934

    Article  PubMed  CAS  Google Scholar 

  40. Rodionov, DA, Hebbeln, P, Gelfand, MS, Eitinger, T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188: 317–327

    Article  PubMed  CAS  Google Scholar 

  41. Rodrigue, A, Effantin, G, Mandrand-Berthelot, MA (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187: 2912–2916

    Article  PubMed  CAS  Google Scholar 

  42. Saier, MH Jr, Tam, R, Reizer, A, Reizer, J (1994) Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 11: 841–847

    Article  PubMed  CAS  Google Scholar 

  43. Saier, MHJ (2000) A functional–phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64: 354–411

    Article  PubMed  CAS  Google Scholar 

  44. Sambrook, J, Fritsch, EF, Maniatis, T (1989) Molecular Cloning, a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  45. Siddiqui, RA, Benthin, K, Schlegel, HG (1989) Cloning of pMOL28-encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp. J Bacteriol 171: 5071–5078

    PubMed  CAS  Google Scholar 

  46. Stoppel, R-D, Meyer, M, Schlegel, HG (1995) The nickel resistance determinant cloned from the enterobacterium Klebsiella oxytoca: conjugational transfer, expression, regulation and DNA homologies to various nickel-resistant bacteria. Biometals 8: 70–79

    Article  PubMed  CAS  Google Scholar 

  47. Stoppel, R-D, Schlegel, HG (1995) Nickel-resistant bacteria from anthropogenically nickel-polluted and naturally nickel-percolated ecosystems. Appl Environ Microbiol 61: 2276–2285

    PubMed  CAS  Google Scholar 

  48. Tseng, T-T, et al. (1999) The RND superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1: 107–125

    PubMed  CAS  Google Scholar 

  49. Vandamme, P, Coenye, T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54: 2285–2289

    Article  PubMed  Google Scholar 

  50. Vaneechoutte, M, Kämpfer, P, De Baere, T, Falsen, E, Verschraegen, G (2004) Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol 54: 317–327

    Article  PubMed  Google Scholar 

  51. Webb, M (1970) Interrelationship between utilization of magnesium and the uptake of other bivalent cations by bacteria. Biochim Biophys Acta 222: 428–439

    PubMed  CAS  Google Scholar 

  52. White, DJ, Merod, R, Thomasson, B, Hartzell, PL (2001) GidA is an FAD-binding protein involved in development of Myxococcus xanthus. Mol Microbiol 42: 503–517

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Grit Schleuder and Inge Reupke for skillful technical assistance. We also thank Cornelia Große and Chris Rensing for helpful discussions and critical reading of the manuscript. This work was supported as part of the GRK 416 “Stress by the Deutsche Forschungsgemeinschaft and innovation grant HWP 56 IF by Land Sachsen-Anhalt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich H. Nies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrero, J., Auling, G., Coto, O. et al. High-Level Resistance to Cobalt and Nickel but Probably No Transenvelope Efflux: Metal Resistance in the Cuban Serratia marcescens Strain C-1. Microb Ecol 53, 123–133 (2007). https://doi.org/10.1007/s00248-006-9152-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9152-7

Keywords

Navigation