Diagnostic value of left atrial strain in pediatric hypertrophic cardiomyopathy with normal maximum left atrial volume index: preliminary cardiac magnetic resonance study

Abstract

Background

The maximum left atrial volume index is the most widely used metric for assessing the left atrium in hypertrophic cardiomyopathy; however, it may be normal in the early phases of the disease.

Objective

To assess whether pediatric hypertrophic cardiomyopathy patients with normal maximum left atrial volume index have impaired atrial functions on cardiac magnetic resonance imaging (MRI).

Materials and method

A total of 26 pediatric hypertrophic cardiomyopathy patients and 24 age-matched children, as controls, were enrolled in the study. The left atrial reservoir, conduit and booster strain were calculated from two orthogonal planes and the left atrial volumes were calculated using the biplanar method. The extent of left ventricular late gadolinium enhancement (LGE-%) was calculated using the thresholding method. The left ventricular early diastolic longitudinal strain rate was calculated to assess diastolic dysfunction.

Results

The maximum left atrial volume index of the children with hypertrophic cardiomyopathy and the controls were not significantly different (P>0.05). Most of the left atrial functional indices were worse in children with hypertrophic cardiomyopathy (P<0.05), yet no difference was observed between the left atrial booster strains of the two groups (P>0.05). The left atrial conduit strain showed moderate to good negative correlations with left ventricular LGE-% and diastolic dysfunction.

Conclusion

Left atrial conduit and reservoir strains are impaired in pediatric hypertrophic cardiomyopathy patients with normal maximum left atrial volumetric indices. Most left atrial strain parameters are closely linked to left ventricular LGE-% and diastolic dysfunction. Left atrial strain analysis may reveal subtle functional changes in the atrium before the increase in the maximum volume index.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 287:1308–1320

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Wigle ED, Rakowski H, Kimball BP, Williams WG (1995) Hypertrophic cardiomyopathy. Clin Spectr Treat Circ 92:1680–1692

    CAS  Google Scholar 

  3. 3.

    Authors/Task Force members, Elliott PM, Anastasakis A et al (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35:2733–2779

    Article  Google Scholar 

  4. 4.

    Geske JB, Sorajja P, Nishimura RA, Ommen SR (2007) Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: correlation with direct left atrial pressure measurement at cardiac catheterization. Circulation 16:2702–2708

    Article  Google Scholar 

  5. 5.

    Dodson JA, Neilan TG, Shah RV et al (2014) Left atrial passive emptying function determined by cardiac magnetic resonance predicts atrial fibrillation recurrence after pulmonary vein isolation. Circ Cardiovasc Imaging 7:586–592

    Article  Google Scholar 

  6. 6.

    Farzaneh-Far A, Ariyarajah V, Shenoy C et al (2011) Left atrial passive emptying function during dobutamine stress MR imaging is a predictor of cardiac events in patients with suspected myocardial ischemia. JACC Cardiovasc Imaging 4:378–388

    Article  Google Scholar 

  7. 7.

    Maron BJ, Haas TS, Maron MS et al (2014) Left atrial remodeling in hypertrophic cardiomyopathy and susceptibility markers for atrial fibrillation identified by cardiovascular magnetic resonance. Am J Cardiol 113:1394–1400

    Article  Google Scholar 

  8. 8.

    Kowallick JT, Kutty S, Edelmann F et al (2014) Quantification of left atrial strain and strain rate using cardiovascular magnetic resonance myocardial feature tracking: a feasibility study. J Cardiovasc Magn Reson 16:60

    Article  Google Scholar 

  9. 9.

    Posina K, McLaughlin J, Rhee P et al (2013) Relationship of phasic left atrial volume and emptying function to left ventricular filling pressure: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 15:99

    Article  Google Scholar 

  10. 10.

    Hinojar R, Zamorano JL, Fernández-Méndez MA et al (2019) Prognostic value of left atrial function by cardiovascular magnetic resonance feature tracking in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 35:1055–1065

  11. 11.

    Collier P, Phelan D, Klein A (2017) A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol 69:1043–1056

    Article  Google Scholar 

  12. 12.

    Morton G, Schuster A, Jogiya R et al (2012) Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking. J Cardiovasc Magn Reson 14:43

    Article  Google Scholar 

  13. 13.

    Evin M, Redheuil A, Soulat G et al (2016) Left atrial aging: a cardiac magnetic resonance feature-tracking study. Am J Physiol Heart Circ Physiol 310:H542–H549

    Article  Google Scholar 

  14. 14.

    Truong VT, Palmer C, Wolking S et al (2020) Normal left atrial strain and strain rate using cardiac magnetic resonance feature tracking in healthy volunteers. Eur Heart J Cardiovasc Imaging 21:446–453

    PubMed  Google Scholar 

  15. 15.

    Kowallick JT, Silva Vieira M, Kutty S et al (2017) Left atrial performance in the course of hypertrophic cardiomyopathy: relation to left ventricular hypertrophy and fibrosis. Investig Radiol 52:177–185

    Article  Google Scholar 

  16. 16.

    Farhad H, Seidelmann SB, Vigneault D et al (2017) Left atrial structure and function in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. J Cardiovasc Magn Reson 19:107

    Article  Google Scholar 

  17. 17.

    Kim K-J, Choi H-M, Yoon YE et al (2016) Left atrial mechanical function and global strain in hypertrophic cardiomyopathy. PLoS One 11:e0157433

    Article  Google Scholar 

  18. 18.

    Saccheri MC, Cianciulli TF, Challapa Licidio W et al (2018) Comparison of left atrial size and function in hypertrophic cardiomyopathy and in Fabry disease with left ventricular hypertrophy. Echocardiography 35:643–650

    Article  Google Scholar 

  19. 19.

    Mazurkiewicz Ł, Ziółkowska L, Petryka J et al (2018) Biatrial performance in children with hypertrophic cardiomyopathy: CMR study. Eur Radiol 28:5148–5159

    Article  Google Scholar 

  20. 20.

    Sarikouch S, Koerperich H, Boethig D et al (2011) Reference values for atrial size and function in children and young adults by cardiac MR: a study of the German competence network congenital heart defects. J Magn Reson Imaging 33:1028–1039

    Article  Google Scholar 

  21. 21.

    Schulz-Menger J, Bluemke DA, Bremerich J et al (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 15:35

    Article  Google Scholar 

  22. 22.

    Cawley PJ, Maki JH, Otto CM (2009) Cardiovascular magnetic resonance imaging for valvular heart disease: technique and validation. Circulation 119:468–478

    Article  Google Scholar 

  23. 23.

    Tigen K, Sunbul M, Karaahmet T et al (2014) Left ventricular and atrial functions in hypertrophic cardiomyopathy patients with very high LVOT gradient: a speckle tracking echocardiographic study. Echocardiography 31:833–841

    Article  Google Scholar 

  24. 24.

    Schulz-Menger J, Abdel-Aty H, Busjahn A et al (2006) Left ventricular outflow tract planimetry by cardiovascular magnetic resonance differentiates obstructive from non-obstructive hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 8:741–746

    Article  Google Scholar 

  25. 25.

    Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging Committee of the Council on clinical cardiology of the American Heart Association. Int J Cardiovasc Imaging 18:539–542

  26. 26.

    Harrigan CJ, Peters DC, Gibson CM et al (2011) Hypertrophic cardiomyopathy: quantification of late gadolinium enhancement with contrast-enhanced cardiovascular MR imaging. Radiology 258:128–133

    Article  Google Scholar 

  27. 27.

    Chen S, Yuan J, Qiao S et al (2014) Evaluation of left ventricular diastolic function by global strain rate imaging in patients with obstructive hypertrophic cardiomyopathy: a simultaneous speckle tracking echocardiography and cardiac catheterization study. Echocardiography 31:615–622

    Article  Google Scholar 

  28. 28.

    Caudron J, Fares J, Bauer F, Dacher JN (2011) Evaluation of left ventricular diastolic function with ardiac MR imaging. Radiographics 31:239–259

    Article  Google Scholar 

  29. 29.

    Hinkle DE, Wiersma W, Jurs SG (2003) Applied statistics for the behavioral sciences, 5th edn. Houghton Mifflin, Boston

    Google Scholar 

  30. 30.

    Poutanen T, Tikanoja T, Jääskeläinen P et al (2006) Diastolic dysfunction without left ventricular hypertrophy is an early finding in children with hypertrophic cardiomyopathy-causing mutations in the beta-myosin heavy chain, alpha-tropomyosin, and myosin-binding protein C genes. Am Heart J 151:725.e1–725.e9

    Article  Google Scholar 

  31. 31.

    Eshoo S, Semsarian C, Ross DL, Thomas L (2010) Left atrial phasic volumes are modulated by the type rather than the extent of left ventricular hypertrophy. J Am Soc Echocardiogr 23:538–544

    Article  Google Scholar 

  32. 32.

    Paraskevaidis IA, Panou F, Papadopoulos C et al (2009) Evaluation of left atrial longitudinal function in patients with hypertrophic cardiomyopathy: a tissue Doppler imaging and two-dimensional strain study. Heart 95:483–489

    CAS  Article  Google Scholar 

  33. 33.

    Anwar AM, Soliman O II, Nemes A et al (2008) An integrated approach to determine left atrial volume, mass and function in hypertrophic cardiomyopathy by two-dimensional echocardiography. Int J Cardiovasc Imaging 24:45–52

  34. 34.

    Anwar AM, Soliman O II, Geleijnse ML et al (2007) Assessment of left atrial ejection force in hypertrophic cardiomyopathy using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 20:744–748

    Article  Google Scholar 

  35. 35.

    Li A, Ruh A, Berhane H et al (2020) Altered regional myocardial velocities by tissue phase mapping and feature tracking in pediatric patients with hypertrophic cardiomyopathy. Pediatr Radiol 50:168–179

    Article  Google Scholar 

  36. 36.

    Smith BM, Dorfman AL, Yu S et al (2014) Relation of strain by feature tracking and clinical outcome in children, adolescents, and young adults with hypertrophic cardiomyopathy. Am J Cardiol 114:1275–1280

    Article  Google Scholar 

  37. 37.

    Bogarapu S, Puchalski MD, Everitt MD et al (2016) Novel cardiac magnetic resonance feature tracking (CMR-FT) analysis for detection of myocardial fibrosis in pediatric hypertrophic cardiomyopathy. Pediatr Cardiol 37:663–673

    Article  Google Scholar 

  38. 38.

    Sivalokanathan S, Zghaib T, Greenland GV et al (2019) Hypertrophic cardiomyopathy patients with paroxysmal atrial fibrillation have a high burden of left atrial fibrosis by cardiac magnetic resonance imaging. JACC Clin Electrophysiol 5:364–375

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deniz Alis.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17.8 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alis, D., Asmakutlu, O., Topel, C. et al. Diagnostic value of left atrial strain in pediatric hypertrophic cardiomyopathy with normal maximum left atrial volume index: preliminary cardiac magnetic resonance study. Pediatr Radiol (2021). https://doi.org/10.1007/s00247-020-04884-x

Download citation

Keywords

  • Cardiac magnetic resonance imaging
  • Children
  • Hypertrophic cardiomyopathy
  • Left atrium
  • Mural strain