Skip to main content
Log in

Evaluating growth failure with diffusion tensor imaging in pediatric survivors of high-risk neuroblastoma treated with high-dose cis-retinoic acid

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

The survival of patients with high-risk neuroblastoma has increased with multimodal therapy, but most survivors demonstrate growth failure.

Objective

To assess physeal abnormalities in children with high-risk neuroblastoma in comparison to normal controls by using diffusion tensor imaging (DTI) of the distal femoral physis and adjacent metaphysis.

Materials and methods

We prospectively obtained physeal DTI at 3.0 T in 20 subjects (mean age: 12.4 years, 7 females) with high-risk neuroblastoma treated with high-dose cis-retinoic acid, and 20 age- and gender-matched controls. We compared fractional anisotropy (FA), normalized tract volume (cm3/cm2) and tract concentration (tracts/cm2) between the groups, in relation to height Z-score and response to growth hormone therapy. Tractography images were evaluated qualitatively.

Results

DTI parameters were significantly lower in high-risk neuroblastoma survivors compared to controls (P<0.01), particularly if the patients were exposed to both cis-retinoic acid and total body irradiation (P<0.05). For survivors and controls, DTI values were respectively [mean ± standard deviation]: tract concentration (tracts/cm2), 23.2±14.7 and 36.7±10.5; normalized tract volume (cm3/cm2), 0.44±0.27 and 0.70±0.21, and FA, 0.22±0.05 and 0.26±0.02. High-risk neuroblastoma survivors responding to growth hormone compared to non-responders had higher FA (0.25±0.04 and 0.18±0.03, respectively, P=0.02), and tract concentration (tracts/cm2) (31.4±13.7 and 14.8±7.9, respectively, P<0.05). FA, normalized tract volume and tract concentration were linearly related to height Z-score (R2>0.31; P<0.001). Qualitatively, tracts were nearly absent in all non-responders to growth hormone and abundant in all responders (P=0.02).

Conclusion

DTI shows physeal abnormalities that correlate with short stature in high-risk neuroblastoma survivors and demonstrates response to growth hormone treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Howlader N, Noone A, Krapcho M et al (2014) SEER Cancer Statistics Review, 1975–2011. National Cancer Institute. Bethesda, MD. Available from: https://seer.cancer.gov/csr/1975_2011/

  2. Cohn SL, Pearson AD, London WB et al (2009) The international neuroblastoma risk group (INRG) classification system: an INRG task force report. J Clin Oncol 27:289–297

  3. Kreissman SG, Seeger RC, Matthay KK et al (2013) Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): a randomised phase 3 trial. Lancet Oncol 14:999–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu AL, Gilman AL, Ozkaynak MF et al (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363:1324–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Matthay KK, Villablanca JG, Seeger RC et al (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N Engl J Med 341:1165–1173

    Article  CAS  PubMed  Google Scholar 

  6. George RE, Li S, Medeiros-Nancarrow C et al (2006) High-risk neuroblastoma treated with tandem autologous peripheral-blood stem cell-supported transplantation: long-term survival update. J Clin Oncol 24:2891–2896

    Article  PubMed  Google Scholar 

  7. Robison LL, Armstrong GT, Boice JD et al (2009) The Childhood Cancer Survivor Study: a National Cancer Institute-supported resource for outcome and intervention research. J Clin Oncol 27:2308–2318

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moreno L, Vaidya SJ, Pinkerton CR et al (2013) Long-term follow-up of children with high-risk neuroblastoma: the ENSG5 trial experience. Pediatr Blood Cancer 60:1135–1140

    Article  PubMed  Google Scholar 

  9. Laverdiere C, Cheung NK, Kushner BH et al (2005) Long-term complications in survivors of advanced stage neuroblastoma. Pediatr Blood Cancer 45:324–332

    Article  PubMed  Google Scholar 

  10. Cohen LE, Gordon JH, Popovsky EY et al (2014) Late effects in children treated with intensive multimodal therapy for high-risk neuroblastoma: high incidence of endocrine and growth problems. Bone Marrow Transplant 49:502–508

    Article  CAS  PubMed  Google Scholar 

  11. Hobbie WL, Moshang T, Carlson CA et al (2008) Late effects in survivors of tandem peripheral blood stem cell transplant for high-risk neuroblastoma. Pediatr Blood Cancer 51:679–683

    Article  PubMed  PubMed Central  Google Scholar 

  12. Trahair TN, Vowels MR, Johnston K et al (2007) Long-term outcomes in children with high-risk neuroblastoma treated with autologous stem cell transplantation. Bone Marrow Transplant 40:741–746

    Article  CAS  PubMed  Google Scholar 

  13. Noyes JJ, Levine MA, Belasco JB, Mostoufi-Moab S (2016) Premature epiphyseal closure of the lower extremities contributing to short stature after cis-retinoic acid therapy in medulloblastoma: a case report. Horm Res Paediatr 85:69–73

    Article  CAS  PubMed  Google Scholar 

  14. Woodard JC, Donovan GA, Fisher LW (1997) Pathogenesis of vitamin (A and D)-induced premature growth-plate closure in calves. Bone 21:171–182

    Article  CAS  PubMed  Google Scholar 

  15. Steineck A, MacKenzie JD, Twist CJ (2016) Premature physeal closure following 13-cis-retinoic acid and prolonged fenretinide administration in neuroblastoma. Pediatr Blood Cancer 63:2050–2053

    Article  CAS  PubMed  Google Scholar 

  16. Bedoya MA, Delgado J, Berman JI et al (2017) Diffusion-tensor imaging of the physes: a possible biomarker for skeletal growth-experience with 151 children. Radiology 284:210–218

    Article  PubMed  Google Scholar 

  17. Jaimes C, Berman JI, Delgado J et al (2014) Diffusion-tensor imaging of the growing ends of long bones: pilot demonstration of columnar structure in the physes and metaphyses of the knee. Radiology 273:491–501

    Article  PubMed  Google Scholar 

  18. Morris NM, Udry JR (1980) Validation of a self-administered instrument to assess stage of adolescent development. J Youth Adolesc 9:271–280

    Article  CAS  PubMed  Google Scholar 

  19. Kowalski KC, Crocker PRE, Donen RM (2004) The physical activity questionnaire for older children (PAQ-C) and adolescents (PAQ-A) manual. University of Saskatchewan, Saskatoon

    Google Scholar 

  20. Wang R, Benner T, Sorensen AG, Wedeen VJ (2007) Diffusion Toolkit: A software package for diffusion imaging data processing and tractography [abstr]. Proceedings of the Fifteenth Meeting of the International Society for Magnetic Resonance in Medicine. International Society for Magnetic Resonance in Medicine, Berkeley

    Google Scholar 

  21. Laor T, Hartman AL, Jaramillo D (1997) Local physeal widening on MR imaging: an incidental finding suggesting prior metaphyseal insult. Pediatr Radiol 27:654–662

    Article  CAS  PubMed  Google Scholar 

  22. Ogden CL, Kuczmarski RJ, Flegal KM et al (2002) Centers for Disease Control and Prevention 2000 growth charts for the United States: improvements to the 1977 National Center for Health Statistics version. Pediatrics 109:45–60

    Article  Google Scholar 

  23. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  Google Scholar 

  24. Douglas DB, Iv M, Douglas PK et al (2015) Diffusion tensor imaging of TBI: potentials and challenges. Top Magn Reson Imaging 24:241–251

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kantarci K (2014) Fractional anisotropy of the fornix and hippocampal atrophy in Alzheimer's disease. Front Aging Neurosci 6:316

    Article  PubMed  PubMed Central  Google Scholar 

  26. Arguelles F, Gomar F, Garcia A, Esquerdo J (1977) Irradiation lesions of the growth plate in rabbits. J Bone Joint Surg Br 59:85–88

    Article  CAS  PubMed  Google Scholar 

  27. Damron TA, Margulies BS, Strauss JA et al (2003) Sequential histomorphometric analysis of the growth plate following irradiation with and without radioprotection. J Bone Joint Surg Am 85-A:1302–1313

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by National Institutes of Health grants K07 CA166177 (SMM), St. Baldrick’s Foundation, the Clinical and Translational Science Award, and Translational Research Center (UL1-RR-024134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sogol Mostoufi-Moab.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, J., Jaramillo, D., Chauvin, N.A. et al. Evaluating growth failure with diffusion tensor imaging in pediatric survivors of high-risk neuroblastoma treated with high-dose cis-retinoic acid. Pediatr Radiol 49, 1056–1065 (2019). https://doi.org/10.1007/s00247-019-04409-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-019-04409-1

Keywords

Navigation