Skip to main content
Log in

Technical feasibility of semiautomatic three-dimensional threshold-based cardiac computed tomography quantification of left ventricular mass

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Semiautomatic three-dimensional (3-D) threshold-based cardiac computed tomography (CT) quantification has not been attempted for left ventricular mass.

Objective

To evaluate the technical feasibility of semiautomatic 3-D threshold-based cardiac CT quantification of left ventricular mass in patients with various degrees of left ventricular hypertrophy.

Materials and methods

In 99 patients, cardiac CT was utilized to quantify ventricular volume and mass by using a semiautomatic 3-D threshold-based method. Left ventricular mass values were compared between the end-systole and the end-diastole. Volumetric parameters were compared among three left ventricular hypertrophy groups (definite, borderline, none). The reproducibility was assessed. The t-test, one-way analysis of variance and Pearson correlation were used.

Results

There were no technical failures. The left ventricular mass between the two sessions exhibited a small mean difference of 2.3±1.1% (mean±standard deviation). The indexed mass values were significantly higher at the end-systole than at the end-diastole (71.4±42.9 g/m2 vs. 65.9±43.3 g/m2, P<0.001), with significant correlation (R=0.99, P<0.001). The definite group (83.5±41.3 g/m2) showed statistically significantly higher indexed mass values than the borderline and none groups (64.7±26.9 and 55.6±23.9 g/m2, respectively; P<0.03), while demonstrating no statistically significant difference between the latter two groups (P>0.05). Left ventricular volume-mass and mass-volume ratios could be calculated in all three groups.

Conclusion

CT quantification of left ventricular mass using semiautomatic 3-D threshold-based segmentation is feasible with high reproducibility and the mass values and its ratios with ventricular volumes may be used in patients with various degrees of left ventricular hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stevens SM, Reinier K, Chugh SS (2013) Increased left ventricular mass as a predictor of sudden cardiac death: is it time to put it to the test? Circ Arrhythm Electrophysiol 6:212–217

    Article  PubMed  PubMed Central  Google Scholar 

  2. Armstrong AC, Gjesdal O, Almeida A et al (2014) Left ventricular mass and hypertrophy by echocardiography and cardiac magnetic resonance: the multi-ethnic study of atherosclerosis. Echocardiography 31:12–20

    Article  PubMed  Google Scholar 

  3. Avegliano GP, Costabel JP, Asch FM et al (2016) Utility of real time 3D echocardiography for the assessment of left ventricular mass in patients with hypertrophic cardiomyopathy: comparison with cardiac magnetic resonance. Echocardiography 33:431–436

    Article  PubMed  Google Scholar 

  4. Chuang ML, Gona P, Hautvast GL et al (2012) Correlation of trabeculae and papillary muscles with clinical and cardiac characteristics and impact on CMR measures of LV anatomy and function. JACC Cardiovasc Imaging 5:1115–1123

    Article  PubMed  PubMed Central  Google Scholar 

  5. Varga-Szemes A, Muscogiuri G, Schoepf UJ et al (2016) Clinical feasibility of a myocardial signal intensity threshold-based semi-automated cardiac magnetic resonance segmentation method. Eur Radiol 26:1503–1511

    Article  PubMed  Google Scholar 

  6. Sugeng L, Mor-Avi V, Weinert L et al (2010) Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc Imaging 3:10–18

    Article  PubMed  Google Scholar 

  7. Kim HJ, Goo HW, Park SH, Yun TJ (2013) Left ventricle volume measured by cardiac CT in an infant with a small left ventricle: a new and accurate method in determining uni- or biventricular repair. Pediatr Radiol 43:243–246

    Article  PubMed  Google Scholar 

  8. Goo HW, Park S (2015) Semiautomatic three-dimensional CT ventricular volumetry in patients with congenital heart disease: agreement between two methods with different user interaction. Int J Card Imaging 31:223–232

    Article  Google Scholar 

  9. Goo HW (2017) Serial changes in anatomy and ventricular function on dual-source cardiac computed tomography after the Norwood procedure for hypoplastic left heart syndrome. Pediatr Radiol 47:1776–1786

    Article  PubMed  Google Scholar 

  10. Goo HW (2018) Is it better to enter a volume CT dose index value before or after scan range adjustment for radiation dose optimization of pediatric cardiothoracic CT with tube current modulation? Korean J Radiol 19:692–703

    Article  PubMed  PubMed Central  Google Scholar 

  11. Goo HW (2018) Comparison of chest pain protocols for electrocardiography-gated dual-source cardiothoracic CT in children and adults: the effect of tube current saturation on radiation dose reduction. Korean J Radiol 19:23–31

    Article  PubMed  PubMed Central  Google Scholar 

  12. Goo HW, Allmendinger T (2017) Combined electrocardiography-- and respiratory-triggered CT of the lung to reduce respiratory misregistration artifacts between imaging slabs in free-breathing children: initial experience. Korean J Radiol 18:860–866

    Article  PubMed  PubMed Central  Google Scholar 

  13. Goo HW (2018) Combined prospectively electrocardiography- and respiratory-triggered sequential cardiac computed tomography in free-breathing children: success rate and image quality. Pediatr Radiol 48:923–931

    Article  PubMed  Google Scholar 

  14. Goo HW (2011) Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation. Pediatr Radiol 41:839–847

    Article  PubMed  Google Scholar 

  15. Goo HW (2012) CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol 13:1–11

  16. Goo HW (2018) Comparison between three-dimensional navigator-gated whole-heart MRI and two-dimensional cine MRI in quantifying ventricular volumes. Korean J Radiol 19:704–714

    Article  PubMed  PubMed Central  Google Scholar 

  17. Buakhamsri A, Popovic ZB, Lin J et al (2009) Impact of left ventricular volume/mass ratio on diastolic function. Eur Heart J 30:1213–1221

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dweck MR, Joshi S, Murigu T et al (2012) Left ventricular remodeling and hypertrophy in patients with aortic stenosis: insights from cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:50

    Article  PubMed  PubMed Central  Google Scholar 

  19. Krieger EV, Clair M, Opotowsky AR et al (2013) Correlation of exercise response in repaired coarctation of the aorta to left ventricular mass and geometry. Am J Cardiol 111:406–411

    Article  PubMed  Google Scholar 

  20. Luijkx T, Cramer MJ, Buckens CF et al (2015) Unravelling the grey zone: cardiac MRI volume to wall mass ratio to differentiate hypertrophic cardiomyopathy and the athlete's heart. Br J Sports Med 49:1404–1409

    Article  PubMed  Google Scholar 

  21. Han Y, Osborn EA, Maron MS et al (2009) Impact of papillary and trabecular muscles on quantitative analyses of cardiac function in hypertrophic cardiomyopathy. J Magn Reson Imaging 30:1197–1202

    Article  PubMed  Google Scholar 

  22. Park EA, Lee W, Kim HK, Chung JW (2015) Effect of papillary muscles and trabeculae on left ventricular measurement using cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Korean J Radiol 16:4–12

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jacquier A, Thuny F, Jop B et al (2010) Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J 31:1098–1104

    Article  PubMed  Google Scholar 

  24. Kozor R, Callaghan F, Tchan M et al (2015) A disproportionate contribution of papillary muscles and trabeculations to total left ventricular mass makes choice of cardiovascular magnetic resonance analysis technique critical in Fabry disease. J Cardiovasc Magn Reson 17:22

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schwarz F, Takx R, Schoepf UJ et al (2011) Reproducibility of left and right ventricular mass measurements with cardiac CT. J Cardiovasc Comput Tomogr 5:317–324

    Article  PubMed  Google Scholar 

  26. Mao SS, Li D, Rosenthal DG et al (2013) Dual-standard reference values of left ventricular volumetric parameters by multidetector CT angiography. J Cardiovasc Comput Tomogr 7:234–240

  27. Klein R, Ametepe ES, Yam Y et al (2017) Cardiac CT assessment of left ventricular mass in mid-diastasis and its prognostic value. Eur Heart J Cardiovasc Imaging 18:95–102

    Article  PubMed  Google Scholar 

  28. Codella NC, Lee HY, Fieno DS et al (2012) Improved left ventricular mass quantification with partial voxel interpolation: in vivo and necropsy validation of a novel cardiac MRI segmentation algorithm. Circ Cardiovasc Imaging 5:137–146

    Article  PubMed  Google Scholar 

  29. Farber NJ, Reddy ST, Doyle M et al (2014) Ex vivo cardiovascular magnetic resonance measurements of right and left ventricular mass compared with direct mass measurement in excised hearts after transplantation: a first human SSFP comparison. J Cardiovasc Magn Reson 16:74

    Article  PubMed  PubMed Central  Google Scholar 

  30. Budoff MJ, Ahmadi N, Sarraf G et al (2009) Determination of left ventricular mass on cardiac computed tomographic angiography. Acad Radiol 16:726–732

    Article  PubMed  Google Scholar 

  31. Supe-Markovina K, Nielsen JC, Musani M et al (2016) Assessment of left ventricular mass and hypertrophy by cardiovascular magnetic resonance imaging in pediatric hypertension. J Clin Hypertens (Greenwich) 18:976–981

    Article  Google Scholar 

  32. Robbers-Visser D, Boersma E, Helbing WA (2009) Normal biventricular function, volumes, and mass in children aged 8 to 17 years. J Magn Reson Imaging 29:552–559

    Article  PubMed  Google Scholar 

  33. Sarikouch S, Peters B, Gutberlet M et al (2010) Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging 3:65–76

    Article  PubMed  Google Scholar 

  34. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER et al (2015) Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 17:29

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stojanovska J, Prasitdumrong H, Patel S et al (2014) Reference absolute and indexed values for left and right ventricular volume, function and mass from cardiac computed tomography. J Med Imaging Radiat Oncol 58:547–558

    Article  PubMed  Google Scholar 

  36. Takx RA, Moscariello A, Schoepf UJ et al (2012) Quantification of left and right ventricular function and myocardial mass: comparison of low-radiation dose 2nd generation dual-source CT and cardiac MRI. Eur J Radiol 81:e598–e604

    Article  PubMed  Google Scholar 

  37. Kara B, Nayman A, Guler I et al (2016) Quantitative assessment of left ventricular function and myocardial mass: a comparison of coronary CT angiography with cardiac MRI and echocardiography. Pol J Radiol 81:95–102

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Woo Goo.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goo, H.W. Technical feasibility of semiautomatic three-dimensional threshold-based cardiac computed tomography quantification of left ventricular mass. Pediatr Radiol 49, 318–326 (2019). https://doi.org/10.1007/s00247-018-4303-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-018-4303-9

Keywords

Navigation