Skip to main content

Advertisement

Log in

Introduction to contrast-enhanced ultrasound of the brain in neonates and infants: current understanding and future potential

  • Pictorial Essay
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Contrast-enhanced ultrasound (CEUS) is a valuable bedside imaging technique that enables both qualitative and quantitative assessment of cerebral perfusion. In neonates and infants whose fontanelles remain open, the technique is particularly useful as it delineates cerebral pathology with high soft-tissue contrast. The technique has the potential to be a valuable alternative to computed tomography (CT) or magnetic resonance imaging (MRI) in critically ill neonates and infants in need of bedside imaging. While further studies are needed to validate the technique, preliminary data in this regard appear promising. This review introduces the current understanding and future potential of brain CEUS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hwang M, de Jong RM, Herman S et al (2016) Novel contrast ultrasound evaluation in neonatal hypoxic ischemic injury: case series and future directions. J Ultrasound Med 36:2379–2386

    Article  Google Scholar 

  2. Hwang M, Riggs BJ, Katz J et al (2018) Advanced pediatric neurosonography techniques: contrast-enhanced ultrasonography, elastography, and beyond. J Neuroimaging 28:150–157

    Article  PubMed  Google Scholar 

  3. Ilves P, Lintrop M, Talvik I et al (2009) Low cerebral blood flow velocity and head circumference in infants with severe hypoxic ischemic encephalopathy and poor outcome. Acta Paediatr 98:459–465

    Article  PubMed  Google Scholar 

  4. Okereafor A, Allsop J, Counsell SJ et al (2008) Patterns of brain injury in neonates exposed to perinatal sentinel events. Pediatrics 121:906–914

    Article  PubMed  Google Scholar 

  5. Chugani HT, Phelps ME (1986) Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science 231:840–843

    Article  CAS  PubMed  Google Scholar 

  6. Thorngren-Jerneck K, Ohlsson T, Sandell A et al (2001) Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res 49:495–501

    Article  CAS  PubMed  Google Scholar 

  7. Kastler A, Manzoni P, Chapuy S et al (2014) Transfontanellar contrast enhanced ultrasound in infants: initial experience. J Neuroradiol 41:251–258

    Article  PubMed  Google Scholar 

  8. Apfel RE, Holland CK (1991) Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med Biol 17:179–185

    Article  CAS  PubMed  Google Scholar 

  9. Talu E, Powell RL, Longo ML, Dayton PA (2008) Needle size and injection rate impact microbubble contrast agent population. Ultrasound Med Biol 34:1182–1185

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eisenbrey JR, Daecher A, Kramer MR, Forsberg F (2015) Effects of needle and catheter size on commercially available ultrasound contrast agents. J Ultrasound Med 34:1961–1968

    Article  PubMed  Google Scholar 

  11. Shin SS, Bales JW, Edward Dixon C, Hwang M (2017) Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury. Brain Imaging Behav 11:591–610

    Article  PubMed  Google Scholar 

  12. Koga M, Reutens DC, Wright P et al (2005) The existence and evolution of diffusion-perfusion mismatched tissue in white and gray matter after acute stroke. Stroke 36:2132–2137

    Article  PubMed  Google Scholar 

  13. Berner LP, Cho TH, Haesebaert J et al (2016) MRI assessment of ischemic lesion evolution within white and gray matter. Cerebrovasc Dis 41:291–297

    Article  PubMed  Google Scholar 

  14. de Vries LS, Groenendaal F (2010) Patterns of neonatal hypoxic-ischaemic brain injury. Neuroradiology 52:555–566

    Article  PubMed  PubMed Central  Google Scholar 

  15. Miranda MJ, Olofsson K, Sidaros K (2006) Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling. Pediatr Res 60:359–363

    Article  CAS  PubMed  Google Scholar 

  16. Prada F, Perin A, Martegani A et al (2014) Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery 74:542–552

    Article  PubMed  Google Scholar 

  17. Prada F, Mattei L, Del Bene M et al (2014) Intraoperative cerebral glioma characterization with contrast enhanced ultrasound. Biomed Res Int:484261

  18. Volpe JJ (2001) Neurology of the newborn, 4th edn. W.B. Saunders, Philadelphia

    Google Scholar 

  19. Dykes FD, Dunbar B, Lazarra A, Ahmann PA (1989) Posthemorrhagic hydrocephalus in high-risk preterm infants: natural history, management, and long-term outcome. J Pediatr 114:611–618

    Article  CAS  PubMed  Google Scholar 

  20. Msall ME, Buck GM, Rogers BT et al (1991) Risk factors for major neurodevelopmental impairments and need for special education resources in extremely premature infants. J Pediatr 119:606–614

    Article  CAS  PubMed  Google Scholar 

  21. Resch B, Gedermann A, Maurer U et al (1996) Neurodevelopmental outcome of hydrocephalus following intra−/periventricular hemorrhage in preterm infants: short- and long-term results. Childs Nerv Syst 12:27–33

    Article  CAS  PubMed  Google Scholar 

  22. International PHVD Drug Trial Group (1998) International randomised controlled trial of acetazolamide and furosemide in posthaemorrhagic ventricular dilatation in infancy. Lancet 352:433–440

  23. Borgesen SE, Gjerris F (1987) Relationships between intracranial pressure, ventricular size, and resistance to CSF outflow. J Neurosurg 67:535–539

    Article  CAS  PubMed  Google Scholar 

  24. Dahlerup B, Gjerris F, Harmsen A, Sorensen PS (1985) Severe headache as the only symptom of long-standing shunt dysfunction in hydrocephalic children with normal or slit ventricles revealed by computed tomography. Childs Nerv Syst 1:49–52

    Article  CAS  PubMed  Google Scholar 

  25. Ashley WW, McKinstry RC Jr, Leonard JR et al (2005) Use of rapid-sequence magnetic resonance imaging for evaluation of hydrocephalus in children. J Neurosurg 103:124–130

  26. Brawanski A, Soerensen N (1985) Increased ICP without ventriculomegaly. Diagnostic and therapeutic problems in a 1-year-old boy. Childs Nerv Syst 1:66–68

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misun Hwang.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, M. Introduction to contrast-enhanced ultrasound of the brain in neonates and infants: current understanding and future potential. Pediatr Radiol 49, 254–262 (2019). https://doi.org/10.1007/s00247-018-4270-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-018-4270-1

Keywords

Navigation