Skip to main content
Log in

A survey of pediatric diagnostic radiologists in North America: current practices in fetal magnetic resonance imaging

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Fetal magnetic resonance imaging (MRI) is an imaging examination in evolution. Rapid developments over recent decades have led to better image quality, an increased number of examinations and greater impact on patient care.

Objective

To gather data regarding current practices among established programs in North America and provide information to radiologists interested in implementing or growing a fetal MRI service.

Materials and methods

An electronic survey containing 15 questions relevant to the use of fetal MRI was submitted to pediatric radiologists and neuroradiologists. Items regarded scheduling and reporting logistics, magnet strength, patient positioning and patient preparation. Answers and comments were collected, and descriptive statistics were summarized.

Results

One hundred and six survey responses were evaluated. Of the survey responses, 62/106 (58.5%) allow fetal MR scheduling any time during the day and 72/105 (68.6%) exclusively use 1.5-T strength platforms for fetal MRI, while only 7/105 (6.7%) use exclusively 3 T. Patient positioning is variable: supine, 40/106 (37.8%); left lateral decubitus, 22/106 (20.8%), and, patient’s choice, 43/106 (40.6%). Of the centers responding, 51/104 (49.0%) require no particular fasting instructions, while 20/104 (19.2%) request the patient avoid caffeine before the scanning.

Conclusion

Logistical trends in performing fetal MRI may supplement the American College of Radiology’s published technical standards and offer guidance to radiologists new to the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention (2008) Update on overall prevalence of major birth defects–Atlanta, Georgia, 1978-2005. MMWR Morb Mortal Wkly Rep 57:1–5

    Google Scholar 

  2. Bulas D (2007) Fetal magnetic resonance imaging as a complement to fetal ultrasonography. Ultrasound Q 23:3–22

    Article  Google Scholar 

  3. Levine D (2013) Timing of MRI in pregnancy, repeat exams, access, and physician qualifications. Semin Perinatol 37:340–344

    Article  Google Scholar 

  4. Mailáth-Pokorny M, Worda C, Krampl-Bettelheim E et al (2010) What does magnetic resonance imaging add to the prenatal ultrasound diagnosis of facial clefts? Ultrasound Obstet Gynecol 36:445–451

    Article  Google Scholar 

  5. Vimercati A, Greco P, Vera L et al (1999) The diagnostic role of “in utero” magnetic resonance imaging. J Perinat Med 27:303–308

    Article  CAS  Google Scholar 

  6. Bahado-Singh RO, Goncalves LF (2013) Techniques, terminology, and indications for MRI in pregnancy. Semin Perinatol 37:334–339

    Article  Google Scholar 

  7. Smith F, MacLennan F, Abramovich D et al (1984) NMR imaging in human pregnancy: a preliminary study. Magn Reson Imaging 2:57–64

    Article  CAS  Google Scholar 

  8. Thickman D, Mintz M, Mennuti M, Kressel H (1984) MR imaging of cerebral abnormalities in utero. J Comput Assist Tomogr 8:1058–1061

    Article  CAS  Google Scholar 

  9. Johnson I, Symonds E, Kean D et al (1984) Imaging the pregnant human uterus with nuclear magnetic resonance. Am J Obstet Gynecol 148:1136–1139

    Article  CAS  Google Scholar 

  10. Weinreb JC, Lowe TW, Santos-Ramos R et al (1985) Magnetic resonance imaging in obstetric diagnosis. Radiology 154:157–161

    Article  CAS  Google Scholar 

  11. Horvath L, Seeds J (1989) Temporary arrest of fetal movement with pancuronium bromide to enable antenatal magnetic resonance imaging of holoprosencephaly. Am J Perinatol 6:418–420

    Article  CAS  Google Scholar 

  12. Toma P, Lucigrai G, Dodero P, Lituania M (1990) Prenatal detection of an abdominal mass by MR imaging performed while the fetus is immobilized with pancuronium bromide. AJR Am J Roentgenol 154:1049–1050

    Article  CAS  Google Scholar 

  13. Kitagawa H, Pringle K (2017) Fetal surgery: a critical review. Pediatr Surg Int 33:421–433

    Article  CAS  Google Scholar 

  14. Ryan G, Somme S, Crombleholme TM (2016) Airway compromise in the fetus and neonate: prenatal assessment and perinatal management. Semin Fetal Neonatal Med 21:230–239

    Article  Google Scholar 

  15. Reddy UM, Abuhamad AZ, Levine D, Saade GR (2014) Fetal imaging: executive summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, American Institute of Ultrasound in Medicine, American College of Obstetricians and Gynecolog. Am J Obstet Gynecol 210:387–397

    Article  Google Scholar 

  16. Bulas DI, Levine D, Barth RA et al (2015) Fetal MRI. American College of Radiology practice guidelines and technical standards ACR–SPR practice guideline for the safe and optimal performance of fetal magnetic resonance imaging (MRI). http://www.acr.org/$/media/ACR/Documents/PGTS/guidelines/MRI_Fetal. Accessed 11 Feb 2018

  17. Edwards L, Hui L (2018) First and second trimester screening for fetal structural anomalies. Semin Fetal Neonatal Med 23:102–111

    Article  Google Scholar 

  18. Huisman TA, Wisser J, Martin E et al (2002) Fetal magnetic resonance imaging of the central nervous system: a pictorial essay. Eur Radiol 12:1952–1961

    Article  Google Scholar 

  19. Huisman TA, Martin E, Kubik-Huch R, Marincek B (2002) Fetal magnetic resonance imaging of the brain: technical considerations and normal brain development. Eur Radiol 12:1941–1951

    Article  Google Scholar 

  20. Manganaro L, Bernardo S, Antonelli A et al (2017) Fetal MRI of the central nervous system: state-of-the-art. Eur J Radiol 93:273–283

    Article  Google Scholar 

  21. Limperopoulos C, Robertson RL, Khwaja OS et al (2008) How accurately does current fetal imaging identify posterior fossa anomalies? AJR Am J Roentgenol 190:1637–1643

    Article  Google Scholar 

  22. Santos X, Papanna R, Johnson A et al (2010) The use of combined ultrasound and magnetic resonance imaging in the detection of fetal anomalies. Prenat Diagn 30:402–407

    PubMed  Google Scholar 

  23. Ruano R, Lazar DA, Cass DL et al (2014) Fetal lung volume and quantification of liver herniation by magnetic resonance imaging in isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 43:662–669

    Article  CAS  Google Scholar 

  24. Triebwasser JE, Treadwell MC (2017) Prenatal prediction of pulmonary hypoplasia. Semin Fetal Neonatal Med 22:245–249

    Article  Google Scholar 

  25. Chiang G, Levine D (2004) Imaging of adnexal masses in pregnancy. J Ultrasound Med 23:805–819

    Article  Google Scholar 

  26. Bernardo S, Vinci V, Saldari M et al (2015) Dandy-Walker malformation: is the “tail sign” the key sign? Prenat Diagn 35:1358–1364

    Article  Google Scholar 

  27. Robinson AJ, Blaser S, Vladimirov A et al (2015) Foetal “black bone” MRI: utility in assessment of the foetal spine. Br J Radiol 88:1–6

    Article  Google Scholar 

  28. Ferguson MR, Chapman T, Dighe M (2010) Fetal tumors: imaging features. Pediatr Radiol 40:1263–1273

    Article  Google Scholar 

  29. Chapman T (2012) Fetal genitourinary imaging. Pediatr Radiol 42(Suppl 1):S115–S123

    Article  Google Scholar 

  30. Krekora M, Zych-Krekora K, Blitek M et al (2016) Difficulties in prenatal diagnosis of tumour in the fetal sacrococcygeal area. Ultrasound 24:119–124

    Article  Google Scholar 

  31. Brodsky JR, Irace AL, Didas A et al (2017) Teratoma of the neonatal head and neck: a 41-year experience. Int J Pediatr Otorhinolaryngol 97:66–71

    Article  Google Scholar 

  32. Saguintaah M, Couture A, Veyrac C et al (2002) MRI of the fetal gastrointestinal tract. Pediatr Radiol 32:395–404

    Article  Google Scholar 

  33. Faure A, Panait N, Panuel M et al (2017) Predicting postnatal renal function of prenatally detected posterior urethral valves using fetal diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient determination. Prenat Diagn 37:666–672

    Article  CAS  Google Scholar 

  34. Chen X, Shan R, Zhao L et al (2018) Invasive placenta previa: placental bulge with distorted uterine outline and uterine serosal hypervascularity at 1.5T MRI – useful features for differentiating placenta percreta from placenta accreta. Eur Radiol 28:708–717

    Article  Google Scholar 

  35. Webb JA, Thomsen HS, Morcos SK, Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR) (2005) The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol 15:1234–1240

    Article  Google Scholar 

  36. Meng X, Xie L, Song W (2013) Comparing the diagnostic value of ultrasound and magnetic resonance imaging for placenta accreta: a systematic review and meta-analysis. Ultrasound Med Biol 39:1958–1965

    Article  Google Scholar 

  37. Millischer AE, Salomon LJ, Porcher R et al (2017) Magnetic resonance imaging for abnormally invasive placenta: the added value of intravenous gadolinium injection. BJOG 124:88–95

    Article  CAS  Google Scholar 

  38. Bulas D, Egloff A (2013) Benefits and risks of MRI in pregnancy. Semin Perinatol 37:301–304

    Article  Google Scholar 

  39. Ray JG, Vermeulen MJ, Bharatha A et al (2016) Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA 316:952–961

    Article  Google Scholar 

  40. Jaimes C, Delgado J, Hoffman C et al (2017) Does 3T fetal MRI induce adverse acoustic effects in the neonate? A preliminary study comparing postnatal auditory test performance of fetus scanned at 1.5 and 3T MRI. Pediatr Radiol 47:S147

    Google Scholar 

  41. Prayer D, Malinger G, Brugger PC et al (2017) ISUOG practice guidelines: performance of fetal magnetic resonance imaging. Ultrasound Obstet Gynecol 49:671–680

    Article  CAS  Google Scholar 

  42. Plunk MR, Chapman T (2014) The fundamentals of fetal MR imaging: part 1. Curr Probl Diagn Radiol 43:331–346

    Article  Google Scholar 

  43. Victoria T, Jaramillo D, Roberts TP et al (2014) Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience). Pediatr Radiol 44:376–386

    Article  Google Scholar 

  44. Zizka J, Elias P, Hodik K et al (2006) Liver, meconium, haemorrhage: the value of T1-weighted images in fetal MRI. Pediatr Radiol 36:792–801

    Article  Google Scholar 

  45. Inaoka T, Sugimori H, Sasaki Y et al (2007) VIBE MRI for evaluating the normal and abnormal gastrointestinal tract in fetuses. AJR Am J Roentgenol 189:W303–W308

    Article  Google Scholar 

  46. Fetal Magnetic Resonance Imaging (74712, 74713) (2016) CPT Assistant. https://www.supercoder.com/coding-newsletters/my-radiology-coding-alert/you-be-the-coder-count-on-74712-74713-for-fetal-mri-148499-article. Accessed 20 April 2018

  47. Dotson P (2013) CPT ® codes: what are they, why are they necessary, and how are they developed? Adv Wound Care 2:583–587

    Article  Google Scholar 

  48. Howard B, Goodson J, Mengert W (1953) Supine hypotensive syndrome in late pregnancy. Obstet Gynecol 1:371–377

    CAS  PubMed  Google Scholar 

  49. Morong S, Hermsen B, De Vries N (2014) Sleep-disordered breathing in pregnancy: a review of the physiology and potential role for positional therapy. Sleep Breath 18:31–37

    Article  CAS  Google Scholar 

  50. Kim DR, Wang E (2014) Prevention of supine hypotensive syndrome in pregnant women treated with transcranial magnetic stimulation. Psychiatry Res 218:247–248

    Article  Google Scholar 

  51. Ferreira NSS, Barros TLC, Gismondi RA (2016) Supine frequent ventricular extrasystoles in a pregnant woman without structural heart disease. Case Rep Med. https://doi.org/10.1155/2016/6213198

    Article  Google Scholar 

  52. Victoria T, Johnson AM, Christopher Edgar J et al (2016) Comparison between 1.5-T and 3-T MRI for fetal imaging: is there an advantage to imaging with a higher field strength? AJR Am J Roentgenol 206:195–201

    Article  Google Scholar 

  53. Cortes MS, Bargallo N, Arranz A et al (2017) Feasibility and success rate of a fetal MRI and MR spectroscopy research protocol performed at term using a 3.0-tesla scanner. Fetal Diagn Ther 41:127–135

    Article  Google Scholar 

  54. Tocchio S, Kline-Fath B, Kanal E et al (2015) MRI evaluation and safety in the developing brain. Semin Perinatol 39:73–104

    Article  Google Scholar 

  55. Krishnamurthy U, Neelavalli J, Mody S et al (2015) MR imaging of the fetal brain at 1.5T and 3.0T field strengths: comparing specific absorption rate (SAR) and image quality. J Perinat Med 43:209–220

    Article  Google Scholar 

  56. Neelavalli J, Krishnamurthy U, Jella PK et al (2016) Magnetic resonance angiography of fetal vasculature at 3.0 T. Eur Radiol 26:4570–4576

    Article  Google Scholar 

  57. Kim K, Habas P, Rajagopalan V et al (2010) Non-iterative relative bias correction for 3D reconstruction of in utero fetal brain MR imaging. Conf Proc IEEE Eng Med Biol Soc 2010:879–882

    PubMed  Google Scholar 

  58. Marami B, Mohseni Salehi SS, Afacan O et al (2017) Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis. Neuroimage 156:475–488

    Article  Google Scholar 

  59. Seshamani S, Blazejewska AI, Mckown S et al (2016) Detecting default mode networks in utero by integrated 4D fMRI reconstruction and analysis. Hum Brain Mapp 37:4158–4178

    Article  Google Scholar 

  60. Turk EA, Luo J, Gagoski B et al (2017) Spatiotemporal alignment of in utero BOLD-MRI series. J Magn Reson Imaging 46:403–412

    Article  Google Scholar 

  61. Malamateniou C, Malik SJ, Counsell SJ et al (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136

    Article  CAS  Google Scholar 

  62. Birkenfeld A, Laufer N, Sadovksky E (1980) Diurnal variation of fetal activity. Obstet Gynecol 55:417–419

    CAS  PubMed  Google Scholar 

  63. Minors D, Waterhouse J (1979) The effect of maternal posture, meals and time of day on fetal movements. Br J Obs Gynecol 86:717–723

    Article  CAS  Google Scholar 

  64. Sorokin Y, Dierker LJ Jr (1982) Fetal movement. Clin Obstet Gynecol 25:719–734

    Article  CAS  Google Scholar 

  65. Yen C, Mehollin-Ray A, Bernardo F et al (2016) Correlation between maternal breakfast and fetal motion during fetal MRI. Pediatr Radiol 46(Suppl 1):138

    Google Scholar 

  66. Novak Z, Thurmond A, Ross P et al (1993) Gadolinium-DTPA transplacental transfer and distribution in fetal tissue in rabbits. Investig Radiol 28:828–830

    Article  CAS  Google Scholar 

  67. Okazaki O, Murayama N, Masubuchi N et al (1996) Placental transfer and milk secretion of gadodiamide injection in rats. Arzneimittelfors Drug Res 46:83–86

    CAS  Google Scholar 

  68. Rofsky N, Pizzarello D, Weinreb J et al (1994) Effect on fetal mouse development of exposure to MR imaging and gadopentetate dimeglumine. J Magn Reson Imaging 4:805–807

    Article  CAS  Google Scholar 

  69. Rofsky N, Pizzarello D, Duhaney M et al (1995) Effect on magnetic resonance exposure combined with gadopentetate dimeglumine on chromosomes in animal specimens. Acad Radiol 2:492–496

    Article  CAS  Google Scholar 

  70. Morisetti A, Bussi S, Tirone P, de Haen C (1999) Toxicological safety evaluation of gadobenate dimeglumine 0.5M solution for inection (MultiHance), a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr 23(Suppl 1):S207–S217

    Article  Google Scholar 

  71. Leyendecker JR, Gorengaut V, Brown JJ (2004) MR imaging of maternal diseases of the abdomen and pelvis during pregnancy and the immediate postpartum period. Radiographics 24:1301–1316

    Article  Google Scholar 

  72. Birchard KR, Brown MA, Hyslop WB, Semelka RC (2005) MRI of acute abdominal and pelvic pain in pregnant patients. AJR Am J Roentgenol 184:452–458

    Article  Google Scholar 

  73. Sundgren PC, Leander P (2011) Is administration of gadolinium-based contrast media to pregnant women and small children justified? J Magn Reson Imaging 34:750–757

    Article  Google Scholar 

  74. Patenaude Y, Pugash D, Lim K et al (2014) The use of magnetic resonance imaging in the obstetric patient. J Obstet Gynaecol Can 36:349–363

    Article  Google Scholar 

  75. U.S. Food and Drug Administration (2018) FDA Drug Safety Communication: FDA warns that gadolinium-based contrast agents (GBCAs) are retained in the body; requires new class warnings. https://www.fda.gov/Drugs/DrugSafety/ucm589213.htm. Accessed 30 June 2018

  76. Splendiani A, Perri M, Marsecano C et al (2018) Effects of serial macrocyclic-based contrast materials gadoterate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T1-weighted brain: a retrospective study in 158 multiple sclerosis (MS) patients. Radiol Med 123:125–134

    Article  Google Scholar 

  77. Dekkers IA, Roos R, van der Molen AJ (2018) Gadolinium retention after administration of contrast agents based on linear chelators and the recommendations of the European medicines agency. Eur Radiol 28:1579–1584

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Chapman.

Ethics declarations

Conflicts of interest

None

Electronic supplementary material

ESM 1

(PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapman, T., Alazraki, A.L. & Eklund, M.J. A survey of pediatric diagnostic radiologists in North America: current practices in fetal magnetic resonance imaging. Pediatr Radiol 48, 1924–1935 (2018). https://doi.org/10.1007/s00247-018-4236-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-018-4236-3

Keywords

Navigation