Skip to main content
Log in

Morphological features in juvenile Huntington disease associated with cerebellar atrophy — magnetic resonance imaging morphometric analysis

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

The imaging features of Huntington disease are well known in adults, unlike in juvenile-onset Huntington disease.

Objective

To conduct a morphometric magnetic resonance imaging (MRI) analysis in three juvenile Huntington disease patients (ages 2, 4 and 6 years old) to determine whether quantitative cerebral and cerebellar morphological metrics may provide diagnostically interesting patterns of cerebellar and cerebellar atrophy.

Materials and methods

We report the cases of three siblings with extremely early presentations of juvenile Huntington disease associated with dramatic expansions of the morbid paternal allele from 43 to more than 100 CAG trinucleotide repeats. Automatic segmentation of MRI images of the cerebrum and cerebellum was performed and volumes of cerebral substructures and cerebellar lobules of juvenile Huntington disease patients were compared to those of 30 normal gender- and age-matched controls. Juvenile Huntington disease segmented volumes were compared to those of age-matched controls by using a z-score.

Results

Three cerebral substructures (caudate nucleus, putamen and globus pallidus) demonstrated a reduction in size of more than three standard deviations from the normal mean although it was not salient in one of them at clinical reading and was not diagnosed. The size of cerebellum lobules, cerebellum grey matter and cerebellum cortex was reduced by more than two standard deviations in the three patients. The cerebellar atrophy was predominant in the posterior lobe.

Conclusion

Our study sheds light on atrophic cerebral and cerebellar structures in juvenile Huntington disease. Automatic segmentations of the cerebellum provide patterns that may be of diagnostic interest in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gómez-Tortosa E, del Barrio A, García Ruiz PJ et al (1998) Severity of cognitive impairment in juvenile and late-onset Huntington disease. Arch Neurol 55:835–843

    Article  PubMed  Google Scholar 

  2. Nicolas G, Devys D, Goldenberg A et al (2011) Juvenile Huntington disease in an 18-month-old boy revealed by global developmental delay and reduced cerebellar volume. Am J Med Genet A 155A:815–818

    Article  PubMed  CAS  Google Scholar 

  3. Letort D, Gonzalez-Alegre P (2013) Huntington’s disease in children. Handb Clin Neurol 113:1913–1917

    Article  PubMed  Google Scholar 

  4. Montoya A, Price BH, Menear M et al (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatry Neurosci 31:21–29

    PubMed  PubMed Central  Google Scholar 

  5. Ho VB, Chuang HS, Rovira MJ et al (1995) Juvenile Huntington disease: CT and MR features. AJNR Am J Neuroradiol 16:1405–1412

    PubMed  CAS  Google Scholar 

  6. Schapiro M, Cecil KM, Doescher J et al (2004) MR imaging and spectroscopy in juvenile Huntington disease. Pediatr Radiol 34:640–643

    Article  PubMed  Google Scholar 

  7. Fennema-Notestine C, Archibald SL, Jacobson MW et al (2004) In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 63:989–995

    Article  PubMed  CAS  Google Scholar 

  8. Kassubek J, Gaus W, Landwehrmeyer GB (2004) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 62:523–524

    Article  PubMed  Google Scholar 

  9. Rüb U, Hoche F, Brunt ER et al (2013) Degeneration of the cerebellum in Huntington’s disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol 23(2):165–177

    Article  PubMed  CAS  Google Scholar 

  10. Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138

    Article  PubMed  Google Scholar 

  11. Narayanan PL, Warton C, Rosella Boonzaier N et al (2016) Improved segmentation of cerebellar structures in children. J Neurosci Methods 262:1–13

    Article  PubMed  Google Scholar 

  12. Focke NK, Trost S, Paulus W et al (2014) Do manual and voxel-based morphometry measure the same? A proof of concept study. Front Psychiatry 5:39

    Article  PubMed  PubMed Central  Google Scholar 

  13. Manjón JV, Coupé P (2016) volBrain: an online MRI brain volumetry system. Front Neuroinform 10:30

    Article  PubMed  PubMed Central  Google Scholar 

  14. Romero JE, Coupé P, Giraud R et al (2017) CERES: a new cerebellum lobule segmentation method. Neuroimage 147:916–924

    Article  PubMed  Google Scholar 

  15. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851

    Article  PubMed  Google Scholar 

  16. Eskildsen SF, Coupé P, Fonov V et al (2012) BEaST: brain extraction based on nonlocal segmentation technique. Neuroimage 59:2362–2373

    Article  PubMed  Google Scholar 

  17. Romero JE, Manjón JV, Tohka J et al (2015) NABS: non-local automatic brain hemisphere segmentation. Magn Reson Imaging 33:474–484

    Article  PubMed  Google Scholar 

  18. Warner JP, Barron LH, Brock DJ (1993) A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington’s disease chromosomes. Mol Cell Probes 7:235–239

    Article  PubMed  CAS  Google Scholar 

  19. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983

  20. Ranen NG, Stine OC, Abbott MH et al (1995) Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am J Hum Genet 57:593–602

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Moser AD, Epping E, Espe-Pfeifer P, Martin E, Zhorne L, Mathews K et al (2017) A survey-based study identifies common but unrecognized symptoms in a large series of juvenile Huntington’s disease. Neurodegener Dis Manag 7:307–315

  22. Ribaï P, Nguyen K, Hahn-Barma V et al (2007) Psychiatric and cognitive difficulties as indicators of juvenile huntington disease onset in 29 patients. Arch Neurol 64:813–819

    Article  PubMed  Google Scholar 

  23. Yoon G, Kramer J, Zanko A et al (2006) Speech and language delay are early manifestations of juvenile-onset Huntington disease. Neurology 67:1265–1267

    Article  PubMed  CAS  Google Scholar 

  24. Cloud LJ, Rosenblatt A, Margolis RL et al (2012) Seizures in juvenile Huntington’s disease: frequency and characterization in a multicenter cohort. Mov Disord 27:1797–1800

    Article  PubMed  Google Scholar 

  25. Aziz NA, van der Burg JMM, Landwehrmeyer GB et al (2008) Weight loss in Huntington disease increases with higher CAG repeat number. Neurology 71:1506–1513

    Article  PubMed  CAS  Google Scholar 

  26. Fusar-Poli P, Radua J, Frascarelli M et al (2014) Evidence of reporting biases in voxel-based morphometry (VBM) studies of psychiatric and neurological disorders. Hum Brain Mapp 35:3052–3065

    Article  PubMed  Google Scholar 

  27. Kühn S, Romanowski A, Schubert F et al (2012) Reduction of cerebellar grey matter in Crus I and II in schizophrenia. Brain Struct Funct 217:523–529

    Article  PubMed  CAS  Google Scholar 

  28. Harris GJ, Pearlson GD, Peyser CE et al (1992) Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in mild Huntington’s disease. Ann Neurol 31:69–75

    Article  PubMed  CAS  Google Scholar 

  29. Aylward EH, Brandt J, Codori AM et al (1994) Reduced basal ganglia volume associated with the gene for Huntington’s disease in asymptomatic at-risk persons. Neurology 44:823–828

    Article  PubMed  CAS  Google Scholar 

  30. Aggleton JP, Mishkin M (1986) The amygdala: Sensory gateway to the emotions. In: Plutchik R, Kellerman H (eds) Biological foundations of emotion. Academic Press, New York, p 281–299

  31. Anderson AK, Phelps EA (2001) Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411:305–309

    Article  PubMed  CAS  Google Scholar 

  32. Lange KW, Sahakian BJ, Quinn NP et al (1995) Comparison of executive and visuospatial memory function in Huntington’s disease and dementia of Alzheimer type matched for degree of dementia. J Neurol Neurosurg Psychiatry 58:598–606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lawrence AD, Sahakian BJ, Hodges JR et al (1996) Executive and mnemonic functions in early Huntington’s disease. Brain J Neurol 119(Pt 5):1633–1645

    Article  Google Scholar 

  34. Bollen E, Reulen JP, Den Heyer JC et al (1986) Horizontal and vertical saccadic eye movement abnormalities in Huntington’s chorea. J Neurol Sci 74:11–22

    Article  PubMed  CAS  Google Scholar 

  35. Hansotia P, Wall R, Berendes J (1985) Sleep disturbances and severity of Huntington’s disease. Neurology 35:1672–1674

    Article  PubMed  CAS  Google Scholar 

  36. Jeste DV, Barban L, Parisi J (1984) Reduced Purkinje cell density in Huntington’s disease. Exp Neurol 85:78–86

    Article  PubMed  CAS  Google Scholar 

  37. Rodda RA (1981) Cerebellar atrophy in Huntington’s disease. J Neurol Sci 50:147–157

    Article  PubMed  CAS  Google Scholar 

  38. Vinken P, Bruyn G (1987) Extrapyramidal disorders. Elsevier Science Health Science Division, Amsterdam

    Google Scholar 

  39. Rosas HD, Koroshetz WJ, Chen YI et al (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620

    Article  PubMed  CAS  Google Scholar 

  40. Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384

    Article  PubMed  CAS  Google Scholar 

  41. Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  PubMed  CAS  Google Scholar 

  42. Rees EM, Farmer R, Cole JH et al (2014) Cerebellar abnormalities in Huntington’s disease: a role in motor and psychiatric impairment? Mov Disord 29:1648–1654

    Article  PubMed  Google Scholar 

  43. Harper PS (1991) Huntington’s disease. WB Saunders, Philadelphia, p 1–15

  44. Jervis GA (1963) Huntington’s chorea in childhood. Arch Neurol 9:244–257

    Article  PubMed  CAS  Google Scholar 

  45. Markham CH, Knox JW (1965) Observations on Huntington’s chorea in childhood. J Pediatr 67:46–57

    Article  PubMed  CAS  Google Scholar 

  46. Byers RK, Gilles FH, Fung C (1973) Huntington’s disease in children. Neuropathologic study of four cases. Neurology 23:561–569

    Article  PubMed  CAS  Google Scholar 

  47. Vonsattel JPG, Keller C, Cortes Ramirez EP (2011) Huntington’s disease - neuropathology. Handb Clin Neurol 100:83–100

    Article  PubMed  Google Scholar 

  48. Rasmussen A, Macias R, Yescas P et al (2000) Huntington disease in children: genotype-phenotype correlation. Neuropediatrics 31:190–194

    Article  PubMed  CAS  Google Scholar 

  49. Gencik M, Hammans C, Strehl H et al (2002) Chorea Huntington: a rare case with childhood onset. Neuropediatrics 33:90–92

    Article  PubMed  CAS  Google Scholar 

  50. Milunsky JM, Maher TA, Loose BA et al (2003) XL PCR for the detection of large trinucleotide expansions in juvenile Huntington’s disease. Clin Genet 64:70–73

    Article  PubMed  CAS  Google Scholar 

  51. Nahhas FA, Garbern J, Krajewski KM et al (2005) Juvenile onset Huntington disease resulting from a very large maternal expansion. Am J Med Genet A 137A:328–331

    Article  PubMed  CAS  Google Scholar 

  52. Seneca S, Fagnart D, Keymolen K et al (2004) Early onset Huntington disease: a neuronal degeneration syndrome. Eur J Pediatr 163:717–721

    Article  PubMed  Google Scholar 

  53. Sakazume S, Yoshinari S, Oguma E et al (2009) A patient with early onset Huntington disease and severe cerebellar atrophy. Am J Med Genet A 149A:598–601

    Article  PubMed  CAS  Google Scholar 

  54. Fyfe I (2016) Dementia: cerebellar atrophy has disease-specific patterns. Nat Rev Neurol 12:188

    Article  PubMed  Google Scholar 

  55. Crooks R, Mitchell T, Thom M (2000) Patterns of cerebellar atrophy in patients with chronic epilepsy: a quantitative neuropathological study. Epilepsy Res 41:63–73

    Article  PubMed  CAS  Google Scholar 

  56. Hagemann G, Lemieux L, Free SL et al (2002) Cerebellar volumes in newly diagnosed and chronic epilepsy. J Neurol 249:1651–1658

    Article  PubMed  CAS  Google Scholar 

  57. Guo CC, Tan R, Hodges JR et al (2016) Network-selective vulnerability of the human cerebellum to Alzheimer’s disease and frontotemporal dementia. Brain J Neurol 139:1527–1538

    Article  Google Scholar 

  58. Deckel AW (1995) Is Huntington’s disease of cerebellar/brainstem origin? Lancet 345:263–264

    Article  PubMed  CAS  Google Scholar 

  59. Squitieri F, Pustorino G, Cannella M et al (2003) Highly disabling cerebellar presentation in Huntington disease. Eur J Neurol 10:443–444

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Nikki Sabourin-Gibbs of Rouen University Hospital for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Hedjoudje.

Ethics declarations

Conflicts of interest

None

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedjoudje, A., Nicolas, G., Goldenberg, A. et al. Morphological features in juvenile Huntington disease associated with cerebellar atrophy — magnetic resonance imaging morphometric analysis. Pediatr Radiol 48, 1463–1471 (2018). https://doi.org/10.1007/s00247-018-4167-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-018-4167-z

Keywords

Navigation